First Wall, Blanket, and Shield

The first wall, blanket, and shield must withstand a high heat flux, remove hundreds of MW of heat, minimize impurity flow into the plasma, survive neutron and gamma radiation damage, breed tritium fuel, maintain a low tritium inventory, sustain large temperature differences, support high stress levels, avoid safety hazards, shield the coils and external environment, avoid neutron streaming through ducts, be reliable, and be maintainable. High heat flux components, such as helium-cooled tungsten armor tiles, are being developed. Reduced activation ferritic/martensitic (RAFM) steel is the preferred structural material, and silicon carbide may be developed in the future for higher temperature operation. To achieve a satisfactory tritium breeding ratio it may be necessary to use enriched 6Li or a beryllium neutron multiplier. Monte Carlo computer codes can simulate 3D models of neutron and gamma transport, tritium breeding, shielding and radioisotope production. Several blanket configurations with cooling by helium, by PbLi liquid metal, or by molten salt, are being developed, and some of them will be tested in ITER tritium breeding modules. Rankine or Brayton cycle heat engines may be used to generate electricity with efficiency ≳40 %, and fusion energy may also be used for other applications, such as hydrogen production.

[1]  Richard Stevens Burington,et al.  Handbook of Probability and Statistics, with Tables , 1954 .

[2]  J. Whitelaw,et al.  Convective heat and mass transfer , 1966 .

[3]  J. R. Engel,et al.  EXPERIENCE WITH THE MOLTEN-SALT REACTOR EXPERIMENT , 1970 .

[4]  M. El-Wakil,et al.  Nuclear Energy Conversion , 1971 .

[5]  É. Marmer,et al.  High-temperature materials , 1971 .

[6]  R. W. Moir,et al.  “Venetian-blind” direct energy converter for fusion reactors , 1973 .

[7]  A. Fraas Comparative study of the more promising combinations of blanket materials, power conversion systems, and tritium recovery and containment systems for fusion reactors , 1975 .

[8]  G. Miley Fusion Energy Conversion , 1976 .

[9]  T. V. Sheehan,et al.  Fusion Energy for Hydrogen Production , 1978 .

[10]  A. P. Fraas,et al.  ORNL Fusion Power Demonstration Study: Fluid Flow, Heat Transfer, and Stress Analysis Considerations in the Design of Blankets for Full-Scale Fusion Reactors. , 1978 .

[11]  M. Steinberg,et al.  Hydrogen production from fusion reactors coupled with high temperature electrolysis , 1978 .

[12]  J. Fillo Fusion reactors-high temperature electrolysis (HTE) , 1978 .

[13]  H. I. Avci,et al.  NUWMAK: a tokamak reactor design study. [Conceptual design report] , 1979 .

[14]  R. F. Bourque,et al.  Fusion Applications and Market Evaluation (FAME) Study , 1988 .

[15]  Fenguangzhai Song CD , 1992 .

[16]  Wayne R. Meier,et al.  Osiris and SOMBRERO inertial fusion power plant designs–summary, conclusions, and recommendations , 1994 .

[17]  W. H. Williams,et al.  HYLIFE-II: A Molten-Salt Inertial Fusion Energy Power Plant Design — Final Report , 1994 .

[18]  R. Moir Liquid wall inertial fusion energy power plants , 1996 .

[19]  Mark S. Tillack,et al.  Combination of a self-cooled liquid metal breeder blanket with a gas turbine power conversion system , 1998 .

[20]  S. Zinkle,et al.  Operating temperature windows for fusion reactor structural materials , 2000 .

[21]  J. Ogden,et al.  A Study of Options for the Deployment of Large Fusion Power Plants , 2001 .

[22]  Mark S. Tillack,et al.  Design and material issues for high performance SiCf/SiC-based fusion power cores , 2001 .

[23]  K. Shiba,et al.  Materials design data for reduced activation martensitic steel type F82H , 2002 .

[24]  Akira Kohyama,et al.  Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H , 2002 .

[25]  P. Barabaschi,et al.  Key ITER plasma edge and plasma–material interaction issues , 2003 .

[26]  G. V. Pereverzev,et al.  Ignited spherical tokamaks and plasma regimes with LiWalls , 2004 .

[27]  Akira Kohyama,et al.  Interfacial reactions and mechanical properties of W?SiC in-situ joints for plasma facing components , 2004 .

[28]  C. Linsmeier,et al.  Composition and hydrogen isotope retention analysis of co-deposited C/Be layers , 2005 .

[29]  L. Snead,et al.  Development of refractory armored silicon carbide by infrared transient liquid phase processing , 2005 .

[30]  L. El‐Guebaly,et al.  Attractive Design Approaches for a Compact Stellarator Power Plant , 2005 .

[31]  L. El‐Guebaly,et al.  Initial Activation Assessment for ARIES Compact Stellarator Power Plant , 2005 .

[32]  Naoki Mizuguchi,et al.  Improved structure and long-life blanket concepts for heliotron reactors , 2005 .

[33]  Mark S. Tillack,et al.  Advanced power core system for the ARIES-AT power plant , 2006 .

[34]  C. H. Oh Energy Conversion Advanced Heat Transport Loop and Power Cycle , 2006 .

[35]  Laila A. El-Guebaly,et al.  Nuclear performance assessment of ARIES-AT , 2006 .

[36]  Yican Wu,et al.  Status of R&D activities on materials for fusion power reactors , 2007 .

[37]  P. Sardain,et al.  Power plant conceptual studies in Europe , 2007 .

[38]  J. Linke,et al.  High heat flux testing of plasma facing materials and components – Status and perspectives for ITER related activities , 2007 .

[39]  Farrokh Najmabadi,et al.  Review of blanket designs for advanced fusion reactors , 2008 .

[40]  Joachim Roth,et al.  Tritium inventory in ITER plasma-facing materials and tritium removal procedures , 2008 .

[41]  A. R. Raffray,et al.  Safety Assessment of the ARIES Compact Stellarator Design , 2008 .

[42]  Shinya Konishi,et al.  A high temperature blanket concept for hydrogen production , 2008 .

[43]  R. Doerner,et al.  Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions , 2008 .

[44]  Farrokh Najmabadi,et al.  Designing ARIES-CS Compact Radial Build and Nuclear System: Neutronics, Shielding, and Activation , 2008 .

[45]  Minami Yoda,et al.  The ARIES-CS Compact Stellarator Fusion Power Plant , 2008 .

[46]  E. R. Hodgson,et al.  Chapter 12: Generic Diagnostic Issues for a Burning Plasma Experiment , 2008 .

[47]  I. Ricapito,et al.  Lead–lithium eutectic material database for nuclear fusion technology , 2008 .

[48]  T. Ihli,et al.  Efficient helium cooling methods for nuclear fusion devices: Status and prospects , 2009 .

[49]  Siegfried Malang,et al.  Toward the ultimate goal of tritium self-sufficiency: Technical issues and requirements imposed on ARIES advanced power plants , 2009 .

[50]  A. A. Haasz,et al.  An Assessment of the Current Data Affecting Tritium Retention and its Use to Project Towards T Retention in ITER , 2010 .

[51]  H. Takatsu ITER project and fusion technology , 2011 .

[52]  R. Doerner,et al.  Sputtering properties of tungsten ‘fuzzy’ surfaces , 2011 .

[53]  D. Andruczyk,et al.  Lithium–metal infused trenches (LiMIT) for heat removal in fusion devices , 2011 .

[54]  L. E. Zakharov,et al.  Fusion-Fission Research Facility (FFRF) as a Practical Step Toward Hybrids , 2011 .

[55]  LiWALL FUSION — THE NEW CONCEPT OF MAGNETIC FUSION , 2011 .

[56]  S. Malang,et al.  State-of-the-Art 3-D Assessment of Elements Degrading the TBR of the ARIES DCLL Blanket , 2012 .

[57]  J. Linke,et al.  Influence of high flux hydrogen-plasma exposure on the thermal shock induced crack formation in tungsten , 2012 .