A new interpretation of P300 responses upon analysis of coherences

[1]  M Schürmann,et al.  Toward new theories of brain function and brain dynamics. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[2]  Erol Başar,et al.  Brain oscillations are highly influenced by gender differences. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[3]  P. Beart,et al.  Mesolimbic dopaminergic neurones and somatodendritic mechanisms , 1979, Neuroscience Letters.

[4]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[5]  J. Ford,et al.  Reduced communication between frontal and temporal lobes during talking in schizophrenia , 2002, Biological Psychiatry.

[6]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[7]  E. Basar,et al.  Oscillatory brain theory: a new trend in neuroscience. , 1999, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[8]  Joachim Röschke,et al.  Time course of human 40 Hz EEG activity accompanying P3 responses in an auditory oddball paradigm , 1997, Neuroscience Letters.

[9]  J. Kelso,et al.  Cortical coordination dynamics and cognition , 2001, Trends in Cognitive Sciences.

[10]  Tamer Demiralp,et al.  Electroencephalogram alpha (8–15 Hz) responses to visual stimuli in cat cortex, thalamus, and hippocampus: a distributed alpha network? , 2000, Neuroscience Letters.

[11]  E Başar,et al.  A new approach to endogenous event-related potentials in man: relation between EEG and P300-wave. , 1984, The International journal of neuroscience.

[12]  E. Basar,et al.  Important associations among EEG-dynamics, event-related potentials, short-term memory and learning. , 1985, The International journal of neuroscience.

[13]  E. Basar,et al.  Gamma, alpha, delta, and theta oscillations govern cognitive processes. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[14]  Erol Başar,et al.  Brain dynamics : progress and perspectives , 1989 .

[15]  A Ademoglu,et al.  Decomposition of Event-Related Brain Potentials into Multiple Functional Components Using Wavelet Transform , 2001, Clinical EEG.

[16]  R. Knight,et al.  Neural origins of the P300. , 2000, Critical reviews in neurobiology.

[17]  J. Yordanova,et al.  Single-sweep analysis of the theta frequency band during an auditory oddball task. , 1998, Psychophysiology.

[18]  E. Ba§ar,et al.  EEG-Brain dynamics: Relation between EEG and brain evoked potentials , 1982 .

[19]  T. Bullock,et al.  EEG coherence has structure in the millimeter domain: subdural and hippocampal recordings from epileptic patients. , 1995, Electroencephalography and clinical neurophysiology.

[20]  Arnold J. Mandell,et al.  Synergetics of the Brain , 1983 .

[21]  A Ademoglu,et al.  Multiple time‐frequency components account for the complex functional reactivity of P300 , 2000, Neuroreport.

[22]  E. Basar Toward a physical approach to integrative physiology. I. Brain dynamics and physical causality. , 1983, The American journal of physiology.

[23]  P. Nunez,et al.  EEG and MEG coherence: Measures of functional connectivity at distinct spatial scales of neocortical dynamics , 2007, Journal of Neuroscience Methods.

[24]  R. Knight,et al.  Contributions of temporal-parietal junction to the human auditory P3 , 1989, Brain Research.

[25]  Erol Başar,et al.  Biophysical and physiological systems analysis , 1976 .

[26]  M. Rowan,et al.  Memory-related EEG power and coherence reductions in mild Alzheimer's disease. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[27]  Ray Johnson,et al.  Event-related brain potentials : basic issues and applications , 1990 .

[28]  W. Klimesch Brain Function and Oscillations, Vol. II: Integrative Brain Function. Neurophysiology and Cognitive Processes, edited by Erol Basar , 1999, Trends in Cognitive Sciences.

[29]  E. Basar,et al.  Event‐related delta oscillatory responses of Alzheimer patients , 2008, European journal of neurology.

[30]  E. Basar,et al.  A review of brain oscillations in cognitive disorders and the role of neurotransmitters , 2008, Brain Research.

[31]  E. Basar,et al.  Alpha oscillations in brain functioning: an integrative theory. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[32]  E. Basar,et al.  Increased frontal phase-locking of event-related theta oscillations in Alzheimer patients treated with cholinesterase inhibitors. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[33]  E. Basar Brain Function and Oscillations , 1998 .

[34]  Christoph Braun,et al.  Coherence of gamma-band EEG activity as a basis for associative learning , 1999, Nature.

[35]  G. Viana di Prisco,et al.  Theta synchronization in the limbic system: the role of Gudden's tegmental nuclei , 2001 .

[36]  E. Basar,et al.  Does frequency analysis lead to better understanding of human event related potentials. , 1985, The International journal of neuroscience.

[37]  E. Basar,et al.  Are cognitive processes manifested in event-related gamma, alpha, theta and delta oscillations in the EEG? , 1999, Neuroscience Letters.

[38]  J. Shaw EEG-brain dynamics E. Basar Elsevier/North-Holland, Amsterdam, 1980, pp. 411 Dfl. 184 , 1982, Biological Psychology.

[39]  Christoph S. Herrmann,et al.  Anticipation of natural stimuli modulates EEG dynamics: physiology and simulation , 2008, Cognitive Neurodynamics.

[40]  W. R. Adey Cell Membranes, Electromagnetic Fields, and Intercellular Communication , 1989 .

[41]  F. H. Lopes da Silva,et al.  Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. , 1980, Electroencephalography and clinical neurophysiology.

[42]  Pekcan Ungan,et al.  Dynamics of brain rhythmic and evoked potentials , 1975, Biological Cybernetics.

[43]  P Ungan,et al.  Combined dynamics of EEG and evoked potentials , 1979, Biological Cybernetics.

[44]  W. R. Adey,et al.  Hippocampal slow waves. Distribution and phase relationships in the course of approach learning. , 1960, Archives of neurology.

[45]  J. Bendat,et al.  Measurement and Analysis of Random Data , 1968 .

[46]  Pekcan Ungan,et al.  Dynamics of brain rhythmic and evoked potentials , 1975, Biological Cybernetics.

[47]  M Kukleta,et al.  Cognitive network interactions and beta 2 coherence in processing non-target stimuli in visual oddball task. , 2009, Physiological research.

[48]  Manuel Schabus,et al.  Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. , 2005, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[49]  E. Gordon,et al.  Neurophysiological markers of contextual processing: the relationship between P3b and Gamma synchrony and their modulation by arousal, performance and individual differences. , 2005, Brain research. Cognitive brain research.

[50]  E. Başar,et al.  Synergetics of Neuronal Populations. A Survey on Experiments , 1983 .

[51]  Erol Başar,et al.  Brain oscillations : principles and approaches , 1998 .

[52]  A. Haig,et al.  Peak gamma latency correlated with reaction time in a conventional oddball paradigm , 1999, Clinical Neurophysiology.

[53]  K. Spencer,et al.  Poststimulus EEG spectral analysis and P300: attention, task, and probability. , 1999, Psychophysiology.

[54]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[55]  T. Demiralp,et al.  Time–frequency analysis reveals multiple functional components during oddball P300 , 1997, Neuroreport.

[56]  R. Verleger,et al.  Reduction of P3b in patients with temporo-parietal lesions. , 1994, Brain research. Cognitive brain research.

[57]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[58]  D I Boomsma,et al.  Genetic Correlation Between the P300 Event-Related Brain Potential and the EEG Power Spectrum , 2001, Behavior genetics.

[59]  E. Basar,et al.  Darwin's evolution theory, brain oscillations, and complex brain function in a new "Cartesian view". , 2009, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[60]  A. von Stein,et al.  Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[61]  E. Basar,et al.  P300-response: possible psychophysiological correlates in delta and theta frequency channels. A review. , 1992, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[62]  A Malanda,et al.  Gamma band responses to target and non-target auditory stimuli in humans , 2004, Neuroscience Letters.

[63]  M Schürmann,et al.  Topological distribution of oddball 'P300' responses. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[64]  D. Tucker,et al.  EEG coherency II: experimental comparisons of multiple measures , 1999, Clinical Neurophysiology.

[65]  R. Hari,et al.  Brain alpa activity - New aspects and functional correlates , 1997 .

[66]  R. Coppola,et al.  Functional and effective frontotemporal connectivity and genetic risk for schizophrenia , 2003, Biological Psychiatry.

[67]  A. Luria Higher Cortical Functions in Man , 1980, Springer US.

[68]  W. J. Williams,et al.  Decomposing delta, theta, and alpha time-frequency ERP activity from a visual oddball task using PCA. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[69]  E. Niedertneyer Quantitative and topological EEG and MEG analysis , 1996 .

[70]  M Schürmann,et al.  Delta responses and cognitive processing: single-trial evaluations of human visual P300. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[71]  J. T. Enright,et al.  Are the electroencephalograms mainly rhythmic? Assessment of periodicity in wide-band time series , 2003, Neuroscience.

[72]  E. Basar The theory of the whole-brain-work. , 2006, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[73]  B. Schacka,et al.  Instantaneous EEG coherence analysis during the Stroop task , 1999 .

[74]  P Ungan,et al.  Combined dynamics of EEG and evoked potentials. II. Studies of simultaneously recorded EEG-EPograms in the auditory pathway, reticular formation, and hippocampus of the cat brain during sleep. , 1979, Biological cybernetics.

[75]  E. Basar,et al.  Prolongation of alpha oscillations in auditory oddball paradigm. , 2009, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[76]  E Başar,et al.  A new strategy involving multiple cognitive paradigms demonstrates that ERP components are determined by the superposition of oscillatory responses , 2000, Clinical Neurophysiology.

[77]  C. Pantev,et al.  Cortical oscillatory power changes during auditory oddball task revealed by spatially filtered magnetoencephalography , 2009, Clinical Neurophysiology.

[78]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[79]  T. Bullock How do brains evolve complexity? An essay. , 2006, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[80]  Görsev Yener,et al.  Decrease of evoked delta, theta and alpha coherences in Alzheimer patients during a visual oddball paradigm , 2008, Brain Research.

[81]  J. Polich Detection of change : event-related potential and fMRI findings , 2003 .

[82]  A. Labarga,et al.  Gamma band activity in an auditory oddball paradigm studied with the wavelet transform , 2001, Clinical Neurophysiology.

[83]  Österreichische Akademie der Wissenschaften,et al.  Eeg and Thinking: Power and Coherence Analysis of Cognitive Processes , 1998 .

[84]  B. Parkinson,et al.  Emotion and motivation , 1995 .

[85]  E. Basar,et al.  Evoked brain rhythms are altered markedly in middle-aged subjects: single-sweep analysis. , 1996, The International journal of neuroscience.

[86]  E. Basar,et al.  Gender differences influence brain's beta oscillatory responses in recognition of facial expressions , 2007, Neuroscience Letters.

[87]  J. Polich Theoretical Overview of P3a and P3b , 2003 .

[88]  V. Samar,et al.  Time–Frequency Analysis of Single-Sweep Event-Related Potentials by Means of Fast Wavelet Transform , 1999, Brain and Language.

[89]  R. Knight,et al.  Effects of temporal-parietal lesions on the somatosensory P3 to lower limb stimulation. , 1992, Electroencephalography and clinical neurophysiology.

[90]  T. Bullock,et al.  Comparison of ongoing compound field potentials in the brains of invertebrates and vertebrates , 1988, Brain Research Reviews.

[91]  J. Polich Updating P300: An integrative theory of P3a and P3b , 2007, Clinical Neurophysiology.

[92]  T. Picton,et al.  EEG spectral dynamics during discrimination of auditory and visual targets. , 2005, Brain research. Cognitive brain research.

[93]  H. Petsche,et al.  The contribution of the cortical layers to the generation of the EEG: field potential and current source density analyses in the rabbit's visual cortex. , 1982, Electroencephalography and clinical neurophysiology.

[94]  Pekcan Ungan,et al.  Comparative frequency analysis of single EEG-evoked potential records. , 1980, Journal of biomedical engineering.

[95]  川又 大 Event-related desynchronization of frontal-midline theta rhythm during preconscious auditory oddball processing , 2009 .

[96]  Claude Tomberg,et al.  Human perceptual processing: inhibition of transient prefrontal-parietal 40 Hz binding at P300 onset documented in non-averaged cognitive brain potentials , 1998, Neuroscience Letters.

[97]  Erol Başar,et al.  Memory and Brain Dynamics: Oscillations Integrating Attention, Perception, Learning, and Memory , 2004 .

[98]  E. Basar,et al.  A compound P300-40 Hz response of the cat hippocampus. , 1991, The International journal of neuroscience.