TRAVELLING WAVE ULTRASONIC MOTORS, PART I: WORKING PRINCIPLE .AND MATHEMATICAL MODELLING OF THE STATOR
暂无分享,去创建一个
Abstract Travelling wave ultrasonic motors have recently been attracting considerable attention: they may possibly soon replace—at least in certain areas—small electromagnetic motors. This development has been made possible by recent advances in power electronics, material research and digital control, which allow utilization of the piezoelectric effect for low power motors. In these motors the mechanical energy is generated with frequencies of the order of 40 kHz via piezo-elements producing bending waves in a stator, which has approximately the form of a circular plate. The rotor is then driven by the stator via contact forces, and with an extremely simple mechanism frequency reductions of 1:40 000 and more are obtained between the stator vibration and the rotor motion. As a consequence, one can work in the 40 kHz range on the electrical side, while a low frequency rotation is obtained on the mechanical side, as is desirable for many applications. In the present paper, which is the first of a series, the working principle of travelling wave ultrasonic motors is reviewed, and the main phenomena are mathematically modelled. In further papers a detailed mathematical description of the stator vibration and a first model of the contact problem will be given.
[1] R. D. Mindlin,et al. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .
[2] S. Timoshenko,et al. THEORY OF PLATES AND SHELLS , 1959 .
[3] P. Morse. Vibration and Sound , 1949, Nature.
[4] E. Reissner. The effect of transverse shear deformation on the bending of elastic plates , 1945 .