On approximation of functions from Sobolev spaces on metric graphs
暂无分享,去创建一个
[1] W. D. Evans,et al. Fractals, trees and the Neumann Laplacian , 1993 .
[2] Nina Uraltseva,et al. Nonlinear Problems in Mathematical Physics and Related Topics II , 2002 .
[3] W. D. Evans,et al. The Approximation Numbers of Hardy‐Type Operators on Trees , 2000 .
[4] W. D. Evans. FUNCTION SPACES, ENTROPY NUMBERS AND DIFFERENTIAL OPERATORS (Cambridge Tracts in Mathematics 120) By David E. Edmunds and Hans Triebel: 252 pp., £40.00, ISBN 0 521 56036 5 (Cambridge University Press, 1996). , 1998 .
[5] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[6] M. Solomjak,et al. Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory , 1980 .
[7] M. Solomyak,et al. Eigenvalue Estimates for the Weighted Laplacian on Metric Trees , 2000 .
[8] On the eigenvalue estimates for the weighted Laplacian on metric graphs , 2002, math/0201015.
[9] A. Pinkus. n-Widths in Approximation Theory , 1985 .