Improved decoding of Reed-Solomon and algebraic-geometric codes

Given an error-correcting code over strings of length n and an arbitrary input string also of length n, the list decoding problem is that of finding all codewords within a specified Hamming distance from the input string. We present an improved list decoding algorithm for decoding Reed-Solomon codes. The list decoding problem for Reed-Solomon codes reduces to the following "curve-fitting" problem over a field F: Given n points {(x/sub i/.y/sub i/)}/sub i=1//sup n/, x/sub i/,y/sub i//spl isin/F, and a degree parameter k and error parameter e, find all univariate polynomials p of degree at most k such that y/sub i/=p(x/sub i/) for all but at most e values of i/spl isin/{1....,n}. We give an algorithm that solves this problem for e1/3, where the result yields the first asymptotic improvement in four decades. The algorithm generalizes to solve the list decoding problem for other algebraic codes, specifically alternant codes (a class of codes including BCH codes) and algebraic-geometric codes. In both cases, we obtain a list decoding algorithm that corrects up to n-/spl radic/(n-d-) errors, where n is the block length and d' is the designed distance of the code. The improvement for the case of algebraic-geometric codes extends the methods of Shokrollahi and Wasserman (1998) and improves upon their bound for every choice of n and d'. We also present some other consequences of our algorithm including a solution to a weighted curve fitting problem, which is of use in soft-decision decoding algorithms for Reed-Solomon codes.

[1]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[2]  Peter Elias,et al.  List decoding for noisy channels , 1957 .

[3]  D. Grigor'ev,et al.  Factorization of polynomials over a finite field and the solution of systems of algebraic equations , 1986 .

[4]  Erich Kaltofen,et al.  Polynomial Factorization 1987-1991 , 1992, LATIN.

[5]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[6]  Erich Kaltofen,et al.  A polynomial-time reduction from bivariate to univariate integral polynomial factorization , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[7]  Madhu Sudan,et al.  Improved Low-Degree Testing and its Applications , 1997, STOC '97.

[8]  R. Blahut Theory and practice of error control codes , 1983 .

[9]  Elwyn R. Berlekamp,et al.  Bounded distance+1 soft-decision Reed-Solomon decoding , 1996, IEEE Trans. Inf. Theory.

[10]  M. Tsfasman,et al.  Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .

[11]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[12]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[13]  Madhu Sudan,et al.  Highly Resilient Correctors for Polynomials , 1992, Inf. Process. Lett..

[14]  Ronitt Rubinfeld,et al.  Reconstructing Algebraic Functions from Mixed Data , 1998, SIAM J. Comput..

[15]  Gui Liang Feng,et al.  A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes , 1991, IEEE Trans. Inf. Theory.

[16]  Ronitt Rubinfeld,et al.  Learning Polynomials with Queries: The Highly Noisy Case , 2000, SIAM J. Discret. Math..

[17]  V. Wei,et al.  Error-Correcting Codes for List Decoding , 1994 .

[18]  W. W. Peterson,et al.  Encoding and error-correction procedures for the Bose-Chaudhuri codes , 1960, IRE Trans. Inf. Theory.

[19]  G. David Forney,et al.  Generalized minimum distance decoding , 1966, IEEE Trans. Inf. Theory.

[20]  M. Sudan Decoding Reed Solomon Codes beyond the Error-Correction Diameter , 1997 .

[21]  Alexander Vardy,et al.  Algorithmic complexity in coding theory and the minimum distance problem , 1997, STOC '97.

[22]  Shuhong Gao,et al.  Computing Roots of Polynomials over Function Fields of Curves , 1999 .

[23]  Amin Shokrollahi,et al.  Decoding algebraic-geometric codes beyond the error-correction bound , 1998, STOC '98.

[24]  R. Roth,et al.  Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[25]  V. Rich Personal communication , 1989, Nature.

[26]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[27]  Amin Shokrollahi,et al.  A displacement approach to efficient decoding of algebraic-geometric codes , 1999, STOC '99.

[28]  Ian F. Blake,et al.  Algebraic-Geometry Codes , 1998, IEEE Trans. Inf. Theory.

[29]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .