Streaming computation of Delaunay triangulations

We show how to greatly accelerate algorithms that compute Delaunay triangulations of huge, well-distributed point sets in 2D and 3D by exploiting the natural spatial coherence in a stream of points. We achieve large performance gains by introducing spatial finalization into point streams: we partition space into regions, and augment a stream of input points with finalization tags that indicate when a point is the last in its region. By extending an incremental algorithm for Delaunay triangulation to use finalization tags and produce streaming mesh output, we compute a billion-triangle terrain representation for the Neuse River system from 11.2 GB of LIDAR data in 48 minutes using only 70 MB of memory on a laptop with two hard drives. This is a factor of twelve faster than the previous fastest out-of-core Delaunay triangulation software.

[1]  Renato Pajarola,et al.  Stream-processing points , 2005, VIS 05. IEEE Visualization, 2005..

[2]  Pankaj K. Agarwal,et al.  I/O-Efficient Construction of Constrained Delaunay Triangulations , 2005, ESA.

[3]  D. Manocha,et al.  Cache-oblivious mesh layouts , 2005, ACM Trans. Graph..

[4]  Guy E. Blelloch,et al.  Compact representations of simplicial meshes in two and three dimensions , 2005, Int. J. Comput. Geom. Appl..

[5]  Martin Isenburg,et al.  Streaming meshes , 2005, VIS 05. IEEE Visualization, 2005..

[6]  Jack Snoeyink,et al.  A Comparison of Five Implementations of 3D Delaunay Tessellation , 2005 .

[7]  Steven Fortune,et al.  Voronoi Diagrams and Delaunay Triangulations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[8]  Martin Isenburg,et al.  Large mesh simplification using processing sequences , 2003, IEEE Visualization, 2003. VIS 2003..

[9]  Martin Isenburg,et al.  Out-of-core compression for gigantic polygon meshes , 2003, ACM Trans. Graph..

[10]  Günter Rote,et al.  Incremental constructions con BRIO , 2003, SCG '03.

[11]  Piyush Kumar Cache Oblivious Algorithms , 2002, Algorithms for Memory Hierarchies.

[12]  Jeffrey Scott Vitter,et al.  External memory algorithms and data structures: dealing with massive data , 2001, CSUR.

[13]  Matteo Frigo,et al.  Cache-oblivious algorithms , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[14]  Guy E. Blelloch,et al.  Design and Implementation of a Practical Parallel Delaunay Algorithm , 1999, Algorithmica.

[15]  Jonathan Richard Shewchuk,et al.  Tetrahedral mesh generation by Delaunay refinement , 1998, SCG '98.

[16]  P Cignoni,et al.  DeWall: A fast divide and conquer Delaunay triangulation algorithm in Ed , 1998, Comput. Aided Des..

[17]  Jonathan Richard Shewchuk,et al.  Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates , 1997, Discret. Comput. Geom..

[18]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[19]  Robert L. Scot Drysdale,et al.  A comparison of sequential Delaunay triangulation algorithms , 1995, SCG '95.

[20]  Richard M. Karp,et al.  On-Line Algorithms Versus Off-Line Algorithms: How Much is it Worth to Know the Future? , 1992, IFIP Congress.

[21]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[22]  Clifford A. Shaffer Fast circle-rectangle intersection checking , 1990 .

[23]  Kenneth L. Clarkson,et al.  A Randomized Algorithm for Closest-Point Queries , 1988, SIAM J. Comput..

[24]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[25]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[26]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[27]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[28]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[29]  C. O. Frederick,et al.  Two-dimensional automatic mesh generation for structural analysis (ijnme 2 (1970)) , 1970 .