Experimental quantum key distribution with source flaws

Decoy-state quantum key distribution (QKD) is a standard technique in current quantum cryptographic implementations. Unfortunately, existing experiments have two important drawbacks: the state preparation is assumed to be perfect without errors and the employed security proofs do not fully consider the finite-key effects for general attacks. These two drawbacks mean that existing experiments are not guaranteed to be secure in practice. Here, we perform an experiment that for the first time shows secure QKD with imperfect state preparations over long distances and achieves rigorous finite-key security bounds for decoy-state QKD against coherent attacks in the universally composable framework. We quantify the source flaws experimentally and demonstrate a QKD implementation that is tolerant to channel loss despite the source flaws. Our implementation considers more real-world problems than most previous experiments and our theory can be applied to general QKD systems. These features constitute a step towards secure QKD with imperfect devices.

[1]  Robert König,et al.  Universally Composable Privacy Amplification Against Quantum Adversaries , 2004, TCC.

[2]  R. Penty,et al.  Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks , 2014, 1402.1508.

[3]  Gilles Brassard,et al.  Experimental loss-tolerant quantum coin flipping , 2011, Nature communications.

[4]  Johannes Skaar,et al.  Security of quantum key distribution with arbitrary individual imperfections , 2009, 0903.3525.

[5]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[8]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[9]  S. Pironio,et al.  Effects of preparation and measurement misalignments on the security of the Bennett-Brassard 1984 quantum-key-distribution protocol , 2012, 1209.6479.

[10]  T. Schmitt-Manderbach Long distance free-space quantum key distribution , 2007 .

[11]  Paolo Villoresi,et al.  Experimental quantum key distribution with finite-key security analysis for noisy channels , 2013, Nature Communications.

[12]  N. Gisin,et al.  Quantum key distribution over 67 km with a plug , 2002 .

[13]  J-C Boileau,et al.  Unconditional security of a three state quantum key distribution protocol. , 2004, Physical review letters.

[14]  Feihu Xu,et al.  Experimental demonstration of phase-remapping attack in a practical quantum key distribution system , 2010, 1005.2376.

[15]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[16]  Hoi-Kwong Lo,et al.  Loss-tolerant quantum cryptography with imperfect sources , 2013, 1312.3514.

[17]  Zach DeVito,et al.  Opt , 2017 .

[18]  Elham Kashefi,et al.  Blind quantum computing with weak coherent pulses. , 2011, Physical review letters.

[19]  H. Lo,et al.  Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw , 2011, 1111.3413.

[20]  Mu-Sheng Jiang,et al.  Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system , 2011, 1203.0739.

[21]  Jian-Wei Pan,et al.  Experimental long-distance decoy-state quantum key distribution based on polarization encoding. , 2006, Physical review letters.

[22]  C. G. Peterson,et al.  Long-distance decoy-state quantum key distribution in optical fiber. , 2006, Physical review letters.

[23]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[24]  Jian-Wei Pan,et al.  General theory of decoy-state quantum cryptography with source errors , 2006, quant-ph/0612121.

[25]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[26]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[27]  Yi Zhao,et al.  Quantum key distribution with an unknown and untrusted source , 2008, 0802.2725.

[28]  Li Qian,et al.  Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. , 2013, Physical review letters.

[29]  E. Diamanti,et al.  Experimental plug and play quantum coin flipping , 2013, Nature Communications.

[30]  David E. Zelmon,et al.  Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. magnesium oxide doped lithium niobate , 1997 .

[31]  Yi Zhao,et al.  Experimental quantum key distribution with decoy states. , 2006, Physical review letters.

[32]  J. Dynes,et al.  Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. , 2008, Optics express.

[33]  T. F. D. Silva,et al.  Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits , 2012, 1207.6345.

[34]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[35]  W. Tittel,et al.  Real-world two-photon interference and proof-of-principle QKD immune to detector attacks , 2013, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[36]  H. Weinfurter,et al.  Air-to-ground quantum communication , 2013, Nature Photonics.

[37]  M. Fejer,et al.  Experimental measurement-device-independent quantum key distribution. , 2012, Physical review letters.

[38]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[39]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[40]  Debbie W. Leung,et al.  The Universal Composable Security of Quantum Key Distribution , 2004, TCC.

[41]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[42]  Toshiaki Suhara,et al.  Waveguide Nonlinear-Optic Devices , 2003 .

[43]  Hoi-Kwong Lo,et al.  Security proof of a three-state quantum-key-distribution protocol without rotational symmetry , 2006 .

[44]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[45]  A R Dixon,et al.  Efficient decoy-state quantum key distribution with quantified security. , 2013, Optics express.

[46]  Qiaoyan Wen,et al.  Finite-key analysis for measurement-device-independent quantum key distribution , 2012 .

[47]  Lowell L. Scheiner,et al.  Fiber-Optic Communications Technology , 2000 .

[48]  M. Hayashi,et al.  Security analysis of the decoy method with the Bennett–Brassard 1984 protocol for finite key lengths , 2013, 1302.4139.

[49]  Andrew G. Glen,et al.  APPL , 2001 .

[50]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[51]  P. Yeh,et al.  Photonics : optical electronics in modern communications , 2006 .

[52]  Feihu Xu,et al.  Concise security bounds for practical decoy-state quantum key distribution , 2013, 1311.7129.