B\"acklund transformations: a tool to study Abelian and non-Abelian nonlinear evolution equations

The KdV eigenfunction equation is considered: some explicit solutions are constructed. These, to the best of the authors’ knowledge, new solutions represent an example of the powerfulness of the method devised. Specifically, Bäcklund transformation are applied to reveal algebraic properties enjoyed by nonlinear evolution equations they connect. Indeed, Bäcklund transformations, well known to represent a key tool in the study of nonlinear evolution equations, are shown to allow the construction of a net of nonlinear links, termed Bäcklund chart, connecting Abelian as well as non Abelian equations. The present study concerns third order nonlinear evolution equations which are all connected to the KdV equation. In particular, the Abelian wide Bäcklund chart connecting these nonlinear evolution equations is recalled. Then, the links, originally established in the case of Abelian equations, are shown to conserve their validity when non Abelian counterparts are considered. In addition, the non-commutative case reveals a richer structure related to the multiplicity of non-Abelian equations which correspond to the same Abelian one. Reduction from the nc to the commutative case allow to show the connection of the KdV equation with KdV eigenfunction equation, in the scalar case. Finally, recently obtained matrix solutions of the mKdV equations are recalled.

[1]  Colin Rogers,et al.  On reciprocal properties of the Caudrey-Dodd-Gibbon and Kaup-Kupershmidt hierarchies , 1987 .

[2]  Alexey Borisovich Shabat,et al.  The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems , 1987 .

[3]  S. Carillo,et al.  Construction of soliton solutions of the matrix modified Korteweg-de Vries equation. , 2020, 2011.12677.

[4]  B. Konopelchenko SOLITON EIGENFUNCTION EQUATIONS: THE IST INTEGRABILITY AND SOME PROPERTIES , 1990 .

[5]  A. Degasperis,et al.  A modified modified Korteweg-de Vries equation , 1985 .

[6]  B. Fuchssteiner,et al.  The action-angle transformation for soliton equations , 1990 .

[7]  B. Fuchssteiner,et al.  The bi‐Hamiltonian structure of some nonlinear fifth‐ and seventh‐order differential equations and recursion formulas for their symmetries and conserved covariants , 1982 .

[8]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion , 1968 .

[9]  N. Euler Matrix solutions for equations of the AKNS system , 2018, Nonlinear Systems and Their Remarkable Mathematical Structures.

[10]  S. Sawada,et al.  A Method for Finding N-Soliton Solutions of the KdV and KdV-Like Equation , 1974 .

[11]  V. Sokolov,et al.  Integrable evolution equations with constant separant , 2013, 1302.6010.

[12]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .

[13]  Wolfgang K. Schief,et al.  Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory , 2002 .

[14]  N. Euler Nonlinear Systems and Their Remarkable Mathematical Structures , 2018 .

[15]  B. Carl,et al.  On realizations of solutions of the KdV equation by determinants on operator ideals , 1996 .

[16]  J. Weiss,et al.  On classes of integrable systems and the Painlevé property , 1984 .

[17]  B. Fuchssteiner Solitons in Interaction , 1987 .

[18]  Benno Fuchssteiner,et al.  Application of hereditary symmetries to nonlinear evolution equations , 1979 .

[19]  C. Schiebold Noncommutative AKNS systems and multisolitonsolutions to the matrix sine-gordon equation , 2009 .

[20]  S. Carillo,et al.  Squared Eigenfunction Symmetries for Soliton Equations: Part I , 1998 .

[21]  S. Carillo,et al.  Regular ArticleSquared Eigenfunction Symmetries for Soliton Equations: Part II☆ , 1998 .

[22]  E. Khruslov,et al.  Matrix generalisation of the modified Korteweg-de Vries equation , 1990 .

[23]  F. Calogero,et al.  The Burgers equation on the semiline with general boundary conditions at the origin , 1991 .

[24]  S. Carillo,et al.  Abelian versus non-Abelian Bäcklund charts: Some remarks , 2018, Evolution Equations & Control Theory.

[25]  S. Carillo,et al.  Bäcklund Transformations and Non-Abelian Nonlinear Evolution Equations: a Novel Bäcklund Chart , 2015, 1512.02386.

[26]  V. Goncharenko Multisoliton Solutions of the Matrix KdV Equation , 2001 .

[27]  Colin Rogers,et al.  The Harry Dym equation in 2+1 dimensions: A reciprocal link with the Kadomtsev-Petviashvili equation , 1987 .

[28]  Masashi Hamanaka,et al.  Noncommutative solitons and quasideterminants , 2010, 1101.0005.

[29]  Anne Nagel,et al.  Backlund Transformations And Their Applications , 2016 .

[30]  V. Zharinov,et al.  Bäcklund transformations , 2016, Theoretical and Mathematical Physics.

[31]  S. Carillo,et al.  Matrix Solitons Solutions of the Modified Korteweg–de Vries Equation , 2019, Nonlinear Dynamics of Structures, Systems and Devices.

[32]  Jing Ping Wang A List of 1+1 Dimensional Integrable Equations and Their Properties , 2002 .

[33]  B. Fuchssteiner The Lie Algebra Structure of Degenerate Hamiltonian and Bi-Hamiltonian Systems , 1982 .

[34]  M. C. Nucci,et al.  On Reciprocal Bäcklund Transformations and the Korteweg-deVries Hierarchy , 1986 .

[35]  S. Kawamoto An Exact Transformation from the Harry Dym Equation to the Modified KdV Equation , 1985 .

[36]  Yi Zhang,et al.  The N-soliton solutions for the matrix modified Korteweg–de Vries equation via the Riemann–Hilbert approach , 2020, The European Physical Journal Plus.

[37]  S. Carillo,et al.  Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: Noncommutative soliton solutions , 2011 .

[38]  A. Karasu,et al.  ON NON-COMMUTATIVE INTEGRABLE BURGERS EQUATIONS , 2009, Journal of Nonlinear Mathematical Physics.

[39]  S. Carillo,et al.  A novel noncommutative KdV-type equation, its recursion operator, and solitons , 2017, 1704.03208.

[40]  F. Gungor,et al.  Linearizability for third order evolution equations , 2016, 1612.01111.

[41]  Mauro Lo Schiavo,et al.  Recursion operators admitted by non-Abelian Burgers equations: Some remarks , 2016, Math. Comput. Simul..

[42]  Zixiang Zhou,et al.  Darboux Transformations in Integrable Systems , 2005 .

[43]  S. Carillo KdV-type equations linked via Bäcklund transformations: Remarks and perspectives , 2017, Applied Numerical Mathematics.

[44]  S. Carillo Nonlinear Evolution Equations: Bäcklund Transformations and Bäcklund Charts , 2012 .

[45]  A. Fordy,et al.  Generalised KdV and MKdV equations associated with symmetric spaces , 1987 .

[46]  D. Levi,et al.  Continuous and discrete matrix Burgers’ hierarchies , 1983 .

[47]  S. I. Svinolupov,et al.  Evolution equations with nontrivial conservative laws , 1982 .

[48]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[49]  B. Fuchssteiner,et al.  The abundant symmetry structure of hierarchies of nonlinear equations obtained by reciprocal links , 1989 .

[50]  Peter J. Olver,et al.  Integrable Evolution Equations on Associative Algebras , 1998 .

[51]  V. Sokolov,et al.  On construction of recursion operators from Lax representation , 1999, solv-int/9909003.

[52]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[53]  Bernd Carl,et al.  Nonlinear equations in soliton physics and operator ideals , 1999 .

[54]  B. Kupershmidt On A Group Of Automorphisms Of The Noncommutative Burgers Hierarchy , 2005 .

[55]  Noncommutative Burgers equation , 2003, hep-th/0301213.

[56]  John D. Gibbon,et al.  A new hierarchy of Korteweg–de Vries equations , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[57]  Francesco Calogero,et al.  Spectral Transform and Solitons , 2012 .

[58]  L. Sakhnovich,et al.  Inverse Problems and Nonlinear Evolution Equations: Solutions, Darboux Matrices and Weyl-Titchmarsh Functions , 2013 .