An Unscented Kalman Smoother for Volatility Extraction: Evidence from Stock Prices and Options

A smoothing algorithm based on the unscented transformation is proposed for the nonlinear Gaussian system. The algorithm first implements a forward unscented Kalman filter and then evokes a separate backward smoothing pass by only making Gaussian approximations in the state but not in the observation space. The method is applied to volatility extraction in a diffusion option pricing model. Both simulation study and empirical applications with the Heston stochastic volatility model indicate that in order to accurately capture the volatility dynamics, both stock prices and options are necessary.

[1]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Stanley P. Azen,et al.  Computational Statistics and Data Analysis (CSDA) , 2006 .

[3]  Simo Särkkä,et al.  Unscented Rauch-Tung-Striebel Smoother , 2008, IEEE Trans. Autom. Control..

[4]  Colin McManus The Unscented Kalman Filter for State Estimation , 2010 .

[5]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[6]  T. Ouarda,et al.  Generalized autoregressive conditional heteroscedasticity modelling of hydrologic time series , 2012 .

[7]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[8]  Nando de Freitas,et al.  Fast particle smoothing: if I had a million particles , 2006, ICML.

[9]  P. Carr,et al.  Time-Changed Levy Processes and Option Pricing ⁄ , 2002 .

[10]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[11]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[12]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[13]  Henrik Madsen,et al.  Nonlinear tracking in a diffusion process with a Bayesian filter and the finite element method , 2011, Comput. Stat. Data Anal..

[14]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[15]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[16]  Henry Cox,et al.  On the estimation of state variables and parameters for noisy dynamic systems , 1964 .

[17]  Conrad Sanderson,et al.  RcppArmadillo: Accelerating R with high-performance C++ linear algebra , 2014, Comput. Stat. Data Anal..

[18]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[19]  William J. McCausland,et al.  Simulation smoothing for state-space models: A computational efficiency analysis , 2011, Comput. Stat. Data Anal..

[20]  Jun Yu,et al.  A flexible and automated likelihood based framework for inference in stochastic volatility models , 2014, Comput. Stat. Data Anal..

[21]  D. Fraser,et al.  The optimum linear smoother as a combination of two optimum linear filters , 1969 .

[22]  Kyriakos Chourdakis Option Pricing Using the Fractional FFT , 2004 .

[23]  N. Shephard Stochastic Volatility: Selected Readings , 2005 .

[24]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[25]  Kris Jacobs,et al.  Nonlinear Kalman Filtering in Affine Term Structure Models , 2013, Manag. Sci..

[26]  Rudolph van der Merwe,et al.  The Unscented Kalman Filter , 2002 .