Algebraic properties of robust Padé approximants

For a recent new numerical method for computing so-called robust Pade approximants through SVD techniques, the authors gave numerical evidence that such approximants are insensitive to perturbations in the data and do not have so-called spurious poles, that is, poles with close-by zero or poles with small residuals. A black box procedure for eliminating spurious poles would have a major impact on the convergence theory of Pade approximants since it is known that convergence in capacity plus the absence of poles in some domain D implies locally uniform convergence in D .In the present paper we provide a proof for forward stability (or robustness) and show the absence of spurious poles for the subclass of so-called well-conditioned Pade approximants. We also give a numerical example of some robust Pade approximant which has spurious poles and discuss related questions. It turns out that it is not sufficient to discuss only linear algebra properties of the underlying rectangular Toeplitz matrix, since in our results other matrices like Sylvester matrices also occur. These types of matrices have been used before in numerical greatest common divisor computations.

[1]  Herbert Stahl,et al.  Spurious poles in Pade´ approximation , 1998 .

[2]  Herbert Stahl The convergence of diagonal Padé approximants and the Padé conjecture , 1997 .

[3]  Nicholas J. Daras,et al.  Universal Padé approximants of Seleznev type , 2013 .

[4]  L. IbryaevaO. A new algorithm for computing Pade approximants , 2011 .

[5]  Olga L. Ibryaeva,et al.  An algorithm for computing a Padé approximant with minimal degree denominator , 2013, J. Comput. Appl. Math..

[6]  L. Wuytack,et al.  On the Continuity of the Padé Operator , 1983 .

[7]  J. Bunch,et al.  Updating the singular value decomposition , 1978 .

[8]  Lloyd N. Trefethen,et al.  Robust Padé Approximation via SVD , 2013, SIAM Rev..

[9]  M. Froissart,et al.  Approximation de Pade Application à la physique des particules élémentaires , 1969 .

[10]  S. Cabay,et al.  A weakly stable algorithm for Pade´ approximants and the inversion of Hankel matrices , 1993 .

[11]  Gene H. Golub,et al.  On the numerical condition of a generalized Hankel eigenvalue problem , 2007, Numerische Mathematik.

[12]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[13]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[14]  Stephen M. Watt,et al.  The singular value decomposition for polynomial systems , 1995, ISSAC '95.

[15]  A A Gončar ON THE CONVERGENCE OF GENERALIZED PADÉ APPROXIMANTS OF MEROMORPHIC FUNCTIONS , 1975 .

[16]  L. Trefethen Square blocks and equioscillation in the Padé, walsh, and cf tables , 1984 .

[17]  Jacek Gilewicz,et al.  Padé approximants and noise: a case of geometric series , 1997 .

[18]  Herbert Stahl,et al.  Diagonal Padé approximants to hyperelliptic functions , 1996 .

[19]  Bernhard Beckermann,et al.  The condition number of real Vandermonde, Krylov and positive definite Hankel matrices , 2000, Numerische Mathematik.

[20]  George Labahn,et al.  When are Two Numerical Polynomials Relatively Prime? , 1998, J. Symb. Comput..

[21]  Jacek Gilewicz,et al.  Padé approximants and noise: rational functions , 1999 .

[22]  J. Nuttall,et al.  THE CONVERGENCE OF PADÉ APPROXIMANTS TO FUNCTIONS WITH BRANCH POINTS , 1977 .

[23]  Walter F. Mascarenhas Robust Pad\'e Approximants Can Diverge , 2013 .

[24]  Daniel Bessis,et al.  Pade´ approximations in noise filtering , 1996 .