Dynamical Low-Rank Approximation

For the low-rank approximation of time-dependent data matrices and of solutions to matrix differential equations, an increment-based computational approach is proposed and analyzed. In this method, the derivative is projected onto the tangent space of the manifold of rank-$r$ matrices at the current approximation. With an appropriate decomposition of rank-$r$ matrices and their tangent matrices, this yields nonlinear differential equations that are well suited for numerical integration. The error analysis compares the result with the pointwise best approximation in the Frobenius norm. It is shown that the approach gives locally quasi-optimal low-rank approximations. Numerical experiments illustrate the theoretical results.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  Herman Jaramillo,et al.  Wave Mechanics: , 2018, Nature.

[3]  Hongyuan Zha,et al.  On Updating Problems in Latent Semantic Indexing , 1997, SIAM J. Sci. Comput..

[4]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[5]  K. Wright Differential equations for the analytic singular value decomposition of a matrix , 1992 .

[6]  A. Bunse-Gerstner,et al.  Numerical computation of an analytic singular value decomposition of a matrix valued function , 1991 .

[7]  Hongyuan Zha,et al.  Low-Rank Matrix Approximation Using the Lanczos Bidiagonalization Process with Applications , 1999, SIAM J. Sci. Comput..

[8]  Christian Lubich,et al.  On variational approximations in quantum molecular dynamics , 2004, Math. Comput..

[9]  R. Plemmons,et al.  Structured low rank approximation , 2003 .

[10]  J. Frenkel,et al.  Wave mechanics: Advanced general theory , 1934 .

[11]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Timo Eirola,et al.  On Smooth Decompositions of Matrices , 1999, SIAM J. Matrix Anal. Appl..

[13]  Susan T. Dumais,et al.  Using Linear Algebra for Intelligent Information Retrieval , 1995, SIAM Rev..

[14]  M. Beck,et al.  The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .

[15]  Volker Mehrmann,et al.  NUMERICAL METHODS FOR THE COMPUTATION OF ANALYTIC SINGULAR VALUE DECOMPOSITIONS , 1993 .

[16]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[17]  Tiziano Politi,et al.  On the Low-Rank Approximation of Data on the Unit Sphere , 2005, SIAM J. Matrix Anal. Appl..

[18]  Uwe Helmke,et al.  Singular value decomposition of time-varying matrices , 2003, Future Gener. Comput. Syst..