Fast, Adaptive, High-Order Accurate Discretization of the Lippmann-Schwinger Equation in Two Dimensions

We present a fast direct solver for two-dimensional scattering problems, where an incident wave impinges on a penetrable medium with compact support. We represent the scattered field using a volume potential whose kernel is the outgoing Green's function for the exterior domain. Inserting this representation into the governing partial differential equation, we obtain an integral equation of Lippmann--Schwinger type. The principal contribution here is the development of an automatically adaptive, high-order accurate discretization based on a quad-tree data structure which provides rapid access to arbitrary elements of the discretized system matrix. This permits the straightforward application of state-of-the-art algorithms for constructing compressed versions of the solution operator. These solvers typically require $O(N^{3/2})$ work, where $N$ denotes the number of degrees of freedom. We demonstrate the performance of the method for a variety of problems in both low and high frequency regimes.

[1]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[2]  Eric Darve,et al.  An $$\mathcal O (N \log N)$$O(NlogN)  Fast Direct Solver for Partial Hierarchically Semi-Separable Matrices , 2013 .

[3]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[4]  Yu Chen,et al.  A Fast, Direct Algorithm for the Lippmann–Schwinger Integral Equation in Two Dimensions , 2002, Adv. Comput. Math..

[5]  Kai Sandfort The Factorization Method for Inverse Scattering from Periodic Inhomogeneous Media , 2010 .

[6]  Oscar P. Bruno,et al.  An efficient, preconditioned, high-order solver for scattering by two-dimensional inhomogeneous media , 2004 .

[7]  Thorsten Hohage,et al.  Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem , 2006, J. Comput. Phys..

[8]  Sergej Rjasanow,et al.  Adaptive Cross Approximation of Dense Matrices , 2000 .

[9]  Per-Gunnar Martinsson,et al.  An O(N) Direct Solver for Integral Equations on the Plane , 2013, 1303.5466.

[10]  David Smithe,et al.  Electromagnetic mode conversion: understanding waves that suddenly change their nature , 2005 .

[11]  M. Costabel,et al.  On the Spectrum of Volume Integral Operators in Acoustic Scattering , 2014, 1412.8685.

[12]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .

[13]  G. Schmidt,et al.  Numerical Solution of the Lippmann–Schwinger Equation by Approximate Approximations , 2004 .

[14]  V. Rokhlin,et al.  A fast direct solver for boundary integral equations in two dimensions , 2003 .

[15]  Per-Gunnar Martinsson,et al.  A direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation method , 2013, J. Comput. Phys..

[16]  Ran Duan,et al.  High-order quadratures for the solution of scattering problems in two dimensions , 2009, J. Comput. Phys..

[17]  R. Kanwal Linear Integral Equations , 1925, Nature.

[18]  Leslie Greengard,et al.  Remarks on the implementation of wideband FMM for the Helmholtz equation in two dimensions , 2006 .

[19]  Per-Gunnar Martinsson,et al.  A spectrally accurate direct solution technique for frequency-domain scattering problems with variable media , 2013, 1308.5998.

[20]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[21]  Yu Chen,et al.  High-order corrected trapezoidal quadrature rules for functions with a logarithmic singularity in 2-D , 2002 .

[22]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[23]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[24]  Shivkumar Chandrasekaran,et al.  A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..

[25]  Per-Gunnar Martinsson,et al.  Fast direct solvers for integral equations in complex three-dimensional domains , 2009, Acta Numerica.

[26]  Shivkumar Chandrasekaran,et al.  A Fast Solver for HSS Representations via Sparse Matrices , 2006, SIAM J. Matrix Anal. Appl..

[27]  Oscar P. Bruno Wave scattering by inhomogeneous media: efficient algorithms and applications , 2003 .

[28]  M B Amar,et al.  Numerical solution of the Lippmann-Schwinger equations in photoemission: application to xenon , 1983 .

[29]  Laurent Demanet,et al.  The method of polarized traces for the 2D Helmholtz equation , 2014, J. Comput. Phys..

[30]  M. Vouvakis,et al.  The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems , 2005, IEEE Transactions on Electromagnetic Compatibility.

[31]  Leslie Greengard,et al.  A Fast Direct Solver for Structured Linear Systems by Recursive Skeletonization , 2012, SIAM J. Sci. Comput..

[32]  Jingfang Huang,et al.  An adaptive fast solver for the modified Helmholtz equation in two dimensions , 2006 .

[33]  W. Hackbusch,et al.  An introduction to hierarchical matrices , 2001 .

[34]  James Bremer,et al.  An adaptive fast direct solver for boundary integral equations in two dimensions , 2009 .

[35]  Oscar P. Bruno,et al.  Higher-Order Fourier Approximation in Scattering by Two-Dimensional, Inhomogeneous Media , 2004, SIAM J. Numer. Anal..

[36]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[37]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[38]  Per-Gunnar Martinsson,et al.  A Fast Direct Solver for a Class of Elliptic Partial Differential Equations , 2009, J. Sci. Comput..

[39]  Kenneth L. Ho,et al.  Hierarchical Interpolative Factorization for Elliptic Operators: Differential Equations , 2016 .

[40]  Eric Darve,et al.  A fast block low-rank dense solver with applications to finite-element matrices , 2014, J. Comput. Phys..

[41]  Mario Bebendorf,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Hierarchical Lu Decomposition Based Preconditioners for Bem Hierarchical Lu Decomposition Based Preconditioners for Bem , 2022 .

[42]  Leslie Greengard,et al.  A New Fast-Multipole Accelerated Poisson Solver in Two Dimensions , 2001, SIAM J. Sci. Comput..

[43]  G. Vainikko Fast Solvers of the Lippmann-Schwinger Equation , 2000 .

[44]  Harold Weitzner,et al.  Lower hybrid waves in the cold plasma model , 1985 .

[45]  Dhairya Malhotra,et al.  A Volume Integral Equation Stokes Solver for Problems with Variable Coefficients , 2014, SC14: International Conference for High Performance Computing, Networking, Storage and Analysis.

[46]  Eric Darve,et al.  An O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O (N \log N)$$\end{document} Fast Direct Solver fo , 2013, Journal of Scientific Computing.