An interval programming approach for bilevel linear programming problem with fuzzy random coefficients

In the real world, many decision making problems often need to be modeled as a class of bilevel programming problems where fuzzy random coefficients are contained in both objective functions and constraint functions. To deal with these problems, an interval programming approach based on the α-level set is proposed to determine the optimal value range containing the best and worst optimal values so as to provide more information for decision makers. Furthermore, by incorporating expectation optimization model into probabilistic chance constraints, the best and worst optimal problems are transformed into deterministic ones. In addition, an estimation of distribution algorithm is designed to derive the best and worst Stackelberg solutions. Finally, a numerical example is given to show the application of the proposed models and algorithm.

[1]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[2]  Ichiro Nishizaki,et al.  Interactive fuzzy programming for multilevel linear programming problems with fuzzy parameters , 2000 .

[3]  Masatoshi Sakawa,et al.  Stackelberg solutions for fuzzy random bilevel linear programming through level sets and probability maximization , 2012, Oper. Res..

[4]  Jie Lu,et al.  The Definition of Optimal Solution and an Extended Kuhn-Tucker Approach for Fuzzy Linear Bilevel Programming , 2005, IEEE Intell. Informatics Bull..

[5]  M. K. Luhandjula Fuzzy stochastic linear programming: Survey and future research directions , 2006, Eur. J. Oper. Res..

[6]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[7]  Herminia I. Calvete,et al.  Linear bilevel programming with interval coefficients , 2012, J. Comput. Appl. Math..

[8]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[9]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[10]  Masatoshi Sakawa,et al.  Stackelberg solutions for fuzzy random two-level linear programming through level sets and fractile criterion optimization , 2012, Central Eur. J. Oper. Res..

[11]  Talla Nobibon,et al.  FOUNDATION AND FORMULATION OF STOCHASTIC INTERVAL PROGRAMMING , 2006 .

[12]  Huibert Kwakernaak,et al.  Fuzzy random variables--II. Algorithms and examples for the discrete case , 1979, Inf. Sci..

[13]  Guangquan Zhang,et al.  A ${\bm \lambda}$-Cut and Goal-Programming-Based Algorithm for Fuzzy-Linear Multiple-Objective Bilevel Optimization , 2010, IEEE Transactions on Fuzzy Systems.

[14]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[15]  Charles E. Blair,et al.  Computational Difficulties of Bilevel Linear Programming , 1990, Oper. Res..

[16]  John W. Chinneck,et al.  Linear programming with interval coefficients , 2000, J. Oper. Res. Soc..

[17]  Masatoshi Sakawa,et al.  Interactive fuzzy random two-level linear programming through fractile criterion optimization , 2011, Math. Comput. Model..

[18]  Masatoshi Sakawa,et al.  Fuzzy random bilevel linear programming through expectation optimization using possibility and necessity , 2012, Int. J. Mach. Learn. Cybern..

[19]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[20]  Baoding Liu,et al.  Fuzzy random dependent-chance programming , 2001, IEEE Trans. Fuzzy Syst..

[21]  J. Bard Some properties of the bilevel programming problem , 1991 .