Pseudomonas extremaustralis sp. nov., a Poly(3-hydroxybutyrate) Producer Isolated from an Antarctic Environment

[1]  N. I. López,et al.  Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation , 2008, Extremophiles.

[2]  E. Mercadé,et al.  Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. , 2007, International journal of systematic and evolutionary microbiology.

[3]  M. Pettinari,et al.  The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island. , 2007, Plasmid.

[4]  N. I. López,et al.  Impaired polyhydroxybutyrate biosynthesis from glucose in Pseudomonas sp. 14-3 is due to a defective beta-ketothiolase gene. , 2006, FEMS microbiology letters.

[5]  M. Pettinari,et al.  A Polyhydroxybutyrate-Producing Pseudomonas sp. Isolated from Antarctic Environments with High Stress Resistance , 2004, Current Microbiology.

[6]  Sudhir Kumar,et al.  MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..

[7]  E. Stackebrandt,et al.  Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. , 2004, International journal of systematic and evolutionary microbiology.

[8]  R. M. Lafferty,et al.  A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass , 1978, European journal of applied microbiology and biotechnology.

[9]  A. Ulrich,et al.  Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. , 2003, International journal of systematic and evolutionary microbiology.

[10]  D. Nicolau,et al.  Pseudomonas extremorientalis sp. nov., isolated from a drinking water reservoir. , 2002, International journal of systematic and evolutionary microbiology.

[11]  V. Langlois,et al.  Accumulation of poly(3-hydroxybutyrate) from octanoate in different pseudomonas belonging to the rRNA homology group I. , 2002, Systematic and applied microbiology.

[12]  Ju-Young Park,et al.  Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. , 2000, International journal of systematic and evolutionary microbiology.

[13]  N. Palleroni,et al.  Taxonomic implications of synthesis of poly-beta-hydroxybutyrate and other poly-beta-hydroxyalkanoates by aerobic pseudomonads. , 2000, International journal of systematic and evolutionary microbiology.

[14]  V. Bruni,et al.  Psychrotrophic bacteria from a coastal station in the Ross sea (Terra Nova Bay, Antarctica). , 1999, The new microbiologica.

[15]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[16]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[17]  Y. Peer,et al.  The Determination and Comparison of the 16S rRNA Gene Sequences of Species of the Genus Pseudomonas (sensu stricto and Estimation of the Natural Intrageneric Relationships , 1996 .

[18]  R. Kroppenstedt,et al.  Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa , 1996 .

[19]  B. Hoste,et al.  DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. , 1996, International journal of systematic bacteriology.

[20]  V. Bruni,et al.  Heterotrophic bacteria in the Ross Sea (Terra Nova Bay, Antarctica). , 1996, The new microbiologica.

[21]  E. Stackebrandt,et al.  16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. , 1993, FEMS microbiology letters.

[22]  A. Steinbüchel,et al.  Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads , 1990, Applied and environmental microbiology.

[23]  S. Shivaji,et al.  Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica , 1989, Applied and environmental microbiology.

[24]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[25]  J. Kingma,et al.  Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane , 1983, Journal of bacteriology.

[26]  K. Schleifer,et al.  Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. , 1983, Systematic and applied microbiology.

[27]  L. Miller Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids , 1982, Journal of clinical microbiology.

[28]  J G Holt,et al.  Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate , 1982, Applied and environmental microbiology.

[29]  J. Hutton,et al.  Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: Acceleration of the renaturation rate , 1980, Biopolymers.

[30]  P. Cashion,et al.  A rapid method for the base ratio determination of bacterial DNA. , 1977, Analytical biochemistry.

[31]  Kriss Ae,et al.  Microbiological studies of the Wanda Lake (Antarctica) , 1976 .

[32]  I. N. Mitskevich,et al.  [Microbiological studies of the Wanda Lake (Antarctica)]. , 1976, Mikrobiologiia.

[33]  J. Ley,et al.  The quantitative measurement of DNA hybridization from renaturation rates. , 1970, European journal of biochemistry.

[34]  H. Vogel,et al.  Acetylornithinase of Escherichia coli: partial purification and some properties. , 1956, The Journal of biological chemistry.

[35]  King Eo,et al.  Two simple media for the demonstration of pyocyanin and fluorescin. , 1954 .

[36]  E. King,et al.  Two simple media for the demonstration of pyocyanin and fluorescin. , 1954, The Journal of laboratory and clinical medicine.