Median Trajectories
暂无分享,去创建一个
Maarten Löffler | Kevin Buchin | Maike Buchin | Marc J. van Kreveld | Rodrigo I. Silveira | Carola Wenk | Lionov Wiratma | M. V. Kreveld | C. Wenk | M. Buchin | M. Löffler | K. Buchin | Lionov Wiratma
[1] David G. Kirkpatrick,et al. The Projection Median of a Set of Points in R2 , 2009, CCCG.
[2] Joachim Gudmundsson,et al. Detecting Commuting Patterns by Clustering Subtrajectories , 2008, Int. J. Comput. Geom. Appl..
[3] Jae-Gil Lee,et al. TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering , 2008, Proc. VLDB Endow..
[4] David Eppstein,et al. Self-overlapping curves revisited , 2008, SODA.
[5] Erin W. Chambers,et al. Walking your dog in the woods in polynomial time , 2008, SCG '08.
[6] David G. Kirkpatrick,et al. Bounded-Velocity Approximation of Mobile Euclidean 2-Centres , 2008, Int. J. Comput. Geom. Appl..
[7] Robert Weibel,et al. Towards a taxonomy of movement patterns , 2008, Inf. Vis..
[8] Jae-Gil Lee,et al. Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.
[9] Bettina Speckmann,et al. Efficient Detection of Patterns in 2D Trajectories of Moving Points , 2007, GeoInformatica.
[10] STEPHANE DUROCHER,et al. The Steiner Centre of a Set of Points: Stability, Eccentricity, and Applications to Mobile Facility Location , 2006, Int. J. Comput. Geom. Appl..
[11] Ross Purves,et al. An approach to evaluating motion pattern detection techniques in spatio-temporal data , 2006, Comput. Environ. Urban Syst..
[12] Leonidas J. Guibas,et al. Kinetic Medians and kd-Trees , 2002, ESA.
[13] Jack Snoeyink,et al. Testing Homotopy for Paths in the Plane , 2002, SCG '02.
[14] Géza Tóth,et al. Point Sets with Many k-Sets , 2000, SCG '00.
[15] Sariel Har-Peled,et al. Taking a walk in a planar arrangement , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[16] C. Brodley,et al. Knowledge Discovery and Data Mining , 1999, American Scientist.
[17] Padhraic Smyth,et al. Trajectory clustering with mixtures of regression models , 1999, KDD '99.
[18] David Eppstein,et al. Regression Depth and Center Points , 1998, Discret. Comput. Geom..
[19] Tamal K. Dey,et al. Improved Bounds for Planar k -Sets and Related Problems , 1998, Discret. Comput. Geom..
[20] Leonidas J. Guibas,et al. Maintaining the Extent of a Moving Point Set , 1997, WADS.
[21] Francis Y. L. Chin,et al. Finding the Medial Axis of a Simple Polygon in Linear Time , 1995, ISAAC.
[22] J. Hershberger,et al. A Pedestrian Approach to Ray Shooting: Shoot a Ray, Take a Walk , 1995, J. Algorithms.
[23] Helmut Alt,et al. Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..
[24] Günter Rote,et al. Matching shapes with a reference point , 1994, SCG '94.
[25] Mark H. Overmars,et al. The Complexity of the Free Space for a Robot Moving Amidst Fat Obstacles , 1992, Comput. Geom..
[26] John Hershberger,et al. Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract) , 1991, WADS.
[27] Micha Sharir,et al. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..
[28] James R. Munkres,et al. Topology; a first course , 1974 .
[29] P. Agarwal,et al. Staying in the Middle: Exact and Approximate Medians in R1 and R2 for Moving Points , 2005, CCCG.
[30] Daniel S. Halpérin. Arrangements , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[31] A. Blumberg. BASIC TOPOLOGY , 2002 .
[32] Rajeev Raman,et al. Algorithms — ESA 2002 , 2002, Lecture Notes in Computer Science.
[33] J. O'Rourke,et al. Handbook of Discrete and Computational Geometry, Second Edition , 1997 .
[34] Gert Vegter,et al. In handbook of discrete and computational geometry , 1997 .
[35] Subhash Suri,et al. A pedestrian approach to ray shooting: shoot a ray, take a walk , 1993, SODA '93.
[36] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.