Introduction: Big data and partial differential equations†

Partial differential equations (PDEs) are expressions involving an unknown function in many independent variables and their partial derivatives up to a certain order. Since PDEs express continuous change, they have long been used to formulate a myriad of dynamical physical and biological phenomena: heat flow, optics, electrostatics and -dynamics, elasticity, fluid flow and many more. Many of these PDEs can be derived in a variational way, i.e. via minimization of an ‘energy’ functional. In this globalised and technologically advanced age, PDEs are also extensively used for modelling social situations (e.g. models for opinion formation, mathematical finance, crowd motion) and tasks in engineering (such as models for semiconductors, networks, and signal and image processing tasks). In particular, in recent years, there has been increasing interest from applied analysts in applying the models and techniques from variational methods and PDEs to tackle problems in data science. This issue of the European Journal of Applied Mathematics highlights some recent developments in this young and growing area. It gives a taste of endeavours in this realm in two exemplary contributions on PDEs on graphs [1, 2] and one on probabilistic domain decomposition for numerically solving large-scale PDEs [3].

[1]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[2]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[3]  A. Bertozzi,et al.  $\Gamma$-convergence of graph Ginzburg-Landau functionals , 2012, Advances in Differential Equations.

[4]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[5]  Arjuna Flenner,et al.  Diffuse interface methods for multiclass segmentation of high-dimensional data , 2014, Appl. Math. Lett..

[6]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[7]  Alice Koniges,et al.  Hyperspectral Image Classification Using Graph Clustering Methods , 2022 .

[8]  S. Luckhaus,et al.  Implicit time discretization for the mean curvature flow equation , 1995 .

[9]  Nicolas Garcia Trillos,et al.  A new analytical approach to consistency and overfitting in regularized empirical risk minimization , 2016, European Journal of Applied Mathematics.

[10]  Yves van Gennip Using evolving interface techniques to solve network problems , 2017 .

[11]  Kenneth A. Brakke,et al.  The motion of a surface by its mean curvature , 2015 .

[12]  Andrea L. Bertozzi,et al.  Convergence of the Graph Allen–Cahn Scheme , 2017, Journal of Statistical Physics.

[13]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[14]  Arjuna Flenner,et al.  Multiclass Data Segmentation Using Diffuse Interface Methods on Graphs , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  G. Barles,et al.  Front propagation and phase field theory , 1993 .

[16]  Francisco Bernal,et al.  Hybrid PDE solver for data-driven problems and modern branching† , 2017, European Journal of Applied Mathematics.

[17]  Aurélien Garivier,et al.  On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models , 2014, J. Mach. Learn. Res..

[18]  G. Barles,et al.  A Simple Proof of Convergence for an Approximation Scheme for Computing Motions by Mean Curvature , 1995 .

[19]  L. Evans Convergence of an algorithm for mean curvature motion , 1993 .

[20]  Arjuna Flenner,et al.  Diffuse Interface Models on Graphs for Classification of High Dimensional Data , 2012, Multiscale Model. Simul..

[21]  Carola-Bibiane Schönlieb,et al.  Graph Clustering, Variational Image Segmentation Methods and Hough Transform Scale Detection for Object Measurement in Images , 2016, Journal of Mathematical Imaging and Vision.

[22]  Y. Peres,et al.  Tug-of-war with noise: A game-theoretic view of the $p$-Laplacian , 2006, math/0607761.

[23]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[24]  Arjuna Flenner,et al.  Multiclass Semi-Supervised Learning on Graphs using Ginzburg-Landau Functional Minimization , 2013, ICPRAM.

[25]  Xavier Bresson,et al.  Consistency of Cheeger and Ratio Graph Cuts , 2014, J. Mach. Learn. Res..

[26]  F. Almgren,et al.  Curvature-driven flows: a variational approach , 1993 .

[27]  Xavier Desquesnes,et al.  On the game p-Laplacian on weighted graphs with applications in image processing and data clustering† , 2017, European Journal of Applied Mathematics.

[28]  Piero Lanucara,et al.  Domain Decomposition Solution of Elliptic Boundary-Value Problems via Monte Carlo and Quasi-Monte Carlo Methods , 2005, SIAM J. Sci. Comput..

[29]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[30]  S. Osher,et al.  Motion of multiple junctions: a level set approach , 1994 .

[31]  Arjuna Flenner,et al.  Multiclass Diffuse Interface Models for Semi-supervised Learning on Graphs , 2012, ICPRAM.

[32]  Andrea Braides Γ-convergence for beginners , 2002 .

[33]  Christopher R. Anderson,et al.  A Rayleigh-Chebyshev procedure for finding the smallest eigenvalues and associated eigenvectors of large sparse Hermitian matrices , 2010, J. Comput. Phys..

[34]  K. Kawasaki,et al.  Equilibrium morphology of block copolymer melts , 1986 .

[35]  Nicolás García Trillos,et al.  Continuum Limit of Total Variation on Point Clouds , 2014, Archive for Rational Mechanics and Analysis.

[36]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[37]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .

[38]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[39]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Yves van Gennip,et al.  A Max-Cut approximation using a graph based MBO scheme , 2017, Discrete & Continuous Dynamical Systems - B.

[41]  A. Bertozzi,et al.  Mean Curvature, Threshold Dynamics, and Phase Field Theory on Finite Graphs , 2013, 1307.0045.

[42]  Andrea L. Bertozzi,et al.  An MBO Scheme on Graphs for Classification and Image Processing , 2013, SIAM J. Imaging Sci..

[43]  L. Bronsard,et al.  Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics , 1991 .

[44]  Steffen Klamt,et al.  Generalizing Diffuse Interface Methods on Graphs: Nonsmooth Potentials and Hypergraphs , 2016, SIAM J. Appl. Math..