An Evaluation of Local Shape-Based Features for Pedestrian Detection

Pedestrian detection in real world scenes is a challenging problem. In recent years a variety of approaches have been proposed, and impressive results have been reported on a variety of databases. This paper systematically evaluates (1) various local shape descriptors, namely Shape Context and Local Chamfer descriptor and (2) four different interest point detectors for the detection of pedestrians. Those results are compared to the standard global Chamfer matching approach. A main result of the paper is that Shape Context trained on real edge images rather than on clean pedestrian silhouettes combined with the Hessian-Laplace detector outperforms all other tested approaches.

[1]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[2]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[3]  David A. Forsyth,et al.  Body plans , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Tomaso A. Poggio,et al.  Pedestrian detection using wavelet templates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Liang Zhao,et al.  Stereo- and neural network-based pedestrian detection , 1999, Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat. No.99TH8383).

[7]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[8]  Daniel P. Huttenlocher,et al.  Efficient matching of pictorial structures , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[9]  Dariu Gavrila,et al.  Pedestrian Detection from a Moving Vehicle , 2000, ECCV.

[10]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Jitendra Malik,et al.  Geometric blur for template matching , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[12]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[13]  Jitendra Malik,et al.  Estimating Human Body Configurations Using Shape Context Matching , 2002, ECCV.

[14]  Cordelia Schmid,et al.  Learning to Parse Pictures of People , 2002, ECCV.

[15]  Björn Stenger,et al.  Shape context and chamfer matching in cluttered scenes , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[16]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[17]  A. Shashua,et al.  Pedestrian detection for driving assistance systems: single-frame classification and system level performance , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[18]  B. Schiele,et al.  Combined Object Categorization and Segmentation With an Implicit Shape Model , 2004 .

[19]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[20]  Jitendra Malik,et al.  Recovering human body configurations: combining segmentation and recognition , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[21]  Bastian Leibe,et al.  Interleaved Object Categorization and Segmentation , 2003, BMVC.

[22]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[23]  Cordelia Schmid,et al.  Human Detection Based on a Probabilistic Assembly of Robust Part Detectors , 2004, ECCV.

[24]  Bernt Schiele,et al.  Pedestrian detection in crowded scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[25]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..