Molecular characterization of the transition to mid-life in Caenorhabditis elegans

[1]  R. Walker Developmental theory of aging revisited: focus on causal and mechanistic links between development and senescence. , 2011, Rejuvenation research.

[2]  Hongtao Yu,et al.  Mutual regulation between the spindle checkpoint and APC/C. , 2011, Seminars in cell & developmental biology.

[3]  Stuart K. Kim,et al.  Variable Pathogenicity Determines Individual Lifespan in Caenorhabditis elegans , 2011, PLoS genetics.

[4]  Simon Yu,et al.  EGF signaling comes of age: Promotion of healthy aging in C. elegans , 2011, Experimental Gerontology.

[5]  A. Dillin,et al.  The Cell-Non-Autonomous Nature of Electron Transport Chain-Mediated Longevity , 2011, Cell.

[6]  T. Johnson,et al.  Biomarkers of ageing: A challenge for the future , 2010, Experimental Gerontology.

[7]  Janet M Thornton,et al.  DamID in C. elegans reveals longevity-associated targets of DAF-16/FoxO , 2010, Molecular systems biology.

[8]  F. Slack,et al.  Developmental biomarkers of aging in Caenorhabditis elegans , 2010, Developmental dynamics : an official publication of the American Association of Anatomists.

[9]  R. Morimoto,et al.  Caenorhabditis elegans as a model system to study intercompartmental proteostasis: Interrelation of mitochondrial function, longevity, and neurodegenerative diseases , 2010, Developmental dynamics : an official publication of the American Association of Anatomists.

[10]  Lior Shamir,et al.  Quantitative measurement of aging using image texture entropy , 2009, Bioinform..

[11]  D. Golombek,et al.  Timing of Locomotor Activity Circadian Rhythms in Caenorhabditis elegans , 2009, PloS one.

[12]  Elizabeth A Miller,et al.  Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging , 2009, Proceedings of the National Academy of Sciences.

[13]  T. Johnson,et al.  Oxidative stress and longevity in Caenorhabditis elegans as mediated by SKN‐1 , 2009, Aging cell.

[14]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[15]  Alan Hubbard,et al.  Age‐related behaviors have distinct transcriptional profiles in Caenorhabditis elegans , 2008, Aging cell.

[16]  Transcriptional (dys)regulation and aging in Caenorhabditis elegans , 2008, Genome Biology.

[17]  Lior Shamir,et al.  WND-CHARM: Multi-purpose image classification using compound image transforms , 2008, Pattern Recognit. Lett..

[18]  I. Goldberg,et al.  Quantitative Image Analysis Reveals Distinct Structural Transitions during Aging in Caenorhabditis elegans Tissues , 2008, PloS one.

[19]  Lucinda K. Southworth,et al.  An elt-3/elt-5/elt-6 GATA Transcription Circuit Guides Aging in C. elegans , 2008, Cell.

[20]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[21]  Paolo Sassone-Corsi,et al.  Riding Tandem: Circadian Clocks and the Cell Cycle , 2007, Cell.

[22]  C. Kenyon,et al.  Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex , 2007, Proceedings of the National Academy of Sciences.

[23]  Sang‐Myeong Lee,et al.  RLE-1, an E3 ubiquitin ligase, regulates C. elegans aging by catalyzing DAF-16 polyubiquitination. , 2007, Developmental cell.

[24]  John J Tyson,et al.  A proposal for robust temperature compensation of circadian rhythms , 2007, Proceedings of the National Academy of Sciences.

[25]  Ilya G. Goldberg,et al.  Sarcopenia in the Caenorhabditis elegans pharynx correlates with muscle contraction rate over lifespan , 2006, Experimental Gerontology.

[26]  A. Yashin,et al.  Visualizing hidden heterogeneity in isogenic populations of C. elegans , 2006, Experimental Gerontology.

[27]  Michael R. Green,et al.  Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation , 2006, Nature Genetics.

[28]  J. Vaupel,et al.  A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans , 2005, Nature Genetics.

[29]  Peter Woolf,et al.  Control of Mammalian Circadian Rhythm by CKIε-Regulated Proteasome-Mediated PER2 Degradation , 2005, Molecular and Cellular Biology.

[30]  J. McElwee,et al.  Broad spectrum detoxification: the major longevity assurance process regulated by insulin/IGF-1 signaling? , 2005, Mechanisms of Ageing and Development.

[31]  David Gems,et al.  Shared Transcriptional Signature in Caenorhabditis elegans Dauer Larvae and Long-lived daf-2 Mutants Implicates Detoxification System in Longevity Assurance* , 2004, Journal of Biological Chemistry.

[32]  P. Ruoff,et al.  Temperature effects on circadian clocks , 2004 .

[33]  Jonathan Hodgkin,et al.  Responses to infection and possible recognition strategies in the innate immune system of Caenorhabditis elegans. , 2004, Molecular immunology.

[34]  Simon Melov,et al.  Microarray analysis of gene expression with age in individual nematodes , 2004, Aging cell.

[35]  S. Elledge,et al.  BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3 , 2003, Nature.

[36]  Cori Bargmann,et al.  Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans , 2003, Nature.

[37]  K. Becker,et al.  Analysis of microarray data using Z score transformation. , 2003, The Journal of molecular diagnostics : JMD.

[38]  Gary Ruvkun,et al.  A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity , 2003, Nature Genetics.

[39]  Andrew G Fraser,et al.  Rates of Behavior and Aging Specified by Mitochondrial Function During Development , 2002, Science.

[40]  Kyle Duke,et al.  Transcriptional Profile of Aging in C. elegans , 2002, Current Biology.

[41]  S. Hekimi,et al.  Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. , 2001, Developmental cell.

[42]  C. Kenyon,et al.  A C. elegans mutant that lives twice as long as wild type , 1993, Nature.

[43]  M R Rose,et al.  Evolution of senescence: late survival sacrificed for reproduction. , 1991, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[44]  T. Johnson,et al.  A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. , 2002, Genetics.

[45]  T. Johnson,et al.  Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. , 1988, Journal of gerontology.

[46]  T. Johnson,et al.  Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[47]  C. Pittendrigh,et al.  Circadian rhythms and the circadian organization of living systems. , 1960, Cold Spring Harbor symposia on quantitative biology.

[48]  George C. Williams,et al.  PLEIOTROPY, NATURAL SELECTION, AND THE EVOLUTION OF SENESCENCE , 1957, Science of Aging Knowledge Environment.

[49]  D. Harman Aging: a theory based on free radical and radiation chemistry. , 1956, Journal of gerontology.

[50]  J L WHITTENBERGER The nature of the response to stress with aging. , 1956, Bulletin of the New York Academy of Medicine.

[51]  H. Benjamin Biologic versus chronologic age. , 1947, Journal of gerontology.

[52]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.