Shannon-kotel-nikov mappings in joint source-channel coding

This paper deals with lossy joint source-channel coding for transmitting memoryless sources over AWGN channels. The scheme is based on the geometrical interpretation of communication by Kotel'nikov and Shannon where amplitudecontinuous, time-discrete source samples are mapped directly onto the channel using curves or planes. The source and channel spaces can have different dimensions and thereby achieving either compression or error control, depending on whether the source bandwidth is smaller or larger than the channel bandwidth. We present a general theory for 1:N and M:1 dimension changing mappings, and provide two examples for a Gaussian source and channel where we optimize both a 2:1 bandwidth-reducing and a 1:2 bandwidth-expanding mapping. Both examples show high spectral efficiency and provide both graceful degradation and improvement for imperfect channel state information at the transmitter.

[1]  Michael Gastpar,et al.  To code, or not to code: lossy source-channel communication revisited , 2003, IEEE Trans. Inf. Theory.

[2]  P.A. Floor,et al.  Dimension Reducing Mappings in Joint Source-Channel Coding , 2006, Proceedings of the 7th Nordic Signal Processing Symposium - NORSIG 2006.

[3]  Uzi Timor Design of signals for analog communication , 1970, IEEE Trans. Inf. Theory.

[4]  Bernd Girod,et al.  Insights into Mobile Multimedia Communications Error-resilient Coding for H.263 , 2008 .

[5]  H. Skinnemoen Combined source-channel coding with modulation organized vector quantization (MOR-VQ) , 1994, 1994 IEEE GLOBECOM. Communications: The Global Bridge.

[6]  George L. Turin,et al.  The theory of optimum noise immunity , 1959 .

[7]  I. M. Jacobs,et al.  Principles of Communication Engineering , 1965 .

[8]  Tor A. Ramstad,et al.  Using 2:1 Shannon mapping for joint source-channel coding , 2005, Data Compression Conference.

[9]  Tor A. Ramstad,et al.  Bandwidth compression for continuous amplitude channels based on vector approximation to a continuous subset of the source signal space , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[10]  T.A. Ramstad,et al.  Noise Analysis for Dimension Expanding Mappings in Source-Channel Coding , 2006, 2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications.

[11]  D. McRae Performance Evaluation of a New Modulation Technique , 1971 .

[12]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[13]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[14]  Daniel Zwillinger,et al.  CRC standard mathematical tables and formulae; 30th edition , 1995 .

[15]  Toby Berger,et al.  Optimum pulse amplitude modulation-I: Transmitter-receiver design and bounds from information theory , 1967, IEEE Trans. Inf. Theory.

[16]  Nam C. Phamdo,et al.  Hybrid digital-analog (HDA) joint source-channel codes for broadcasting and robust communications , 2002, IEEE Trans. Inf. Theory.

[17]  David Griffel,et al.  The geometry of spacetime : an introduction to special and general relativity , 2000, The Mathematical Gazette.

[18]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[19]  Sae-Young Chung,et al.  On the construction of some capacity-approaching coding schemes , 2000 .

[20]  David J. Sakrison,et al.  Solution manual for problems in Communication theory : transmission of waveforms and digital information , 1968 .

[21]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[22]  W. Beyer CRC Standard Mathematical Tables and Formulae , 1991 .

[23]  Tor A. Ramstad,et al.  Noise immunity for 1:N and M:1 nonlinear mappings for source-channel coding , 2006, Data Compression Conference (DCC'06).

[24]  Mikael Skoglund,et al.  Design and performance of VQ-based hybrid digital-analog joint source-channel codes , 2002, IEEE Trans. Inf. Theory.

[25]  Thomas J. Goblick,et al.  Theoretical limitations on the transmission of data from analog sources , 1965, IEEE Trans. Inf. Theory.

[26]  Toby Berger,et al.  Rate distortion theory : a mathematical basis for data compression , 1971 .

[27]  Mikael Skoglund,et al.  Hybrid Digital–Analog Source–Channel Coding for Bandwidth Compression/Expansion , 2006, IEEE Transactions on Information Theory.

[28]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[29]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[30]  Kyong-Hwa Lee,et al.  Optimal Linear Coding for Vector Channels , 1976, IEEE Trans. Commun..

[31]  Tor A. Ramstad Combined source coding and modulation for mobile multimedia communication , 1999 .

[32]  L. Aiay,et al.  Hybrid Amplitude-and-Phase Modulation for Analog Data Transmission , 1975 .

[33]  T.A. Ramstad,et al.  Quantizer optimization in hybrid digital-analog transmission of analog source signals , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[34]  Vinay A. Vaishampayan Combined Source-Channel Coding for Bandlimited Waveform Channels , 1989 .