Scalable and Flexible Classical Shadow Tomography with Tensor Networks

Classical shadow tomography is a powerful randomized measurement protocol for predicting many properties of a quantum state with few measurements. Two classical shadow protocols have been extensively studied in the literature: the single-qubit (local) Pauli measurement, which is well suited for predicting local operators but inefficient for large operators; and the global Clifford measurement, which is efficient for low-rank operators but infeasible on near-term quantum devices due to the extensive gate overhead. In this work, we demonstrate a scalable classical shadow tomography approach for generic randomized measurements implemented with finite-depth local Clifford random unitary circuits, which interpolates between the limits of Pauli and Clifford measurements. The method combines the recently proposed locally-scrambled classical shadow tomography framework with tensor network techniques to achieve scalability for computing the classical shadow reconstruction map and evaluating various physical properties. The method enables classical shadow tomography to be performed on shallow quantum circuits with superior sample efficiency and minimal gate overhead and is friendly to noisy intermediate-scale quantum (NISQ) devices. We show that the shallow-circuit measurement protocol provides immediate, exponential advantages over the Pauli measurement protocol for predicting quasi-local operators. It also enables a more efficient fidelity estimation compared to the Pauli measurement.

[1]  Tibor Rakovszky,et al.  Operator Relaxation and the Optimal Depth of Classical Shadows. , 2022, Physical review letters.

[2]  Markus Heinrich,et al.  Closed-form analytic expressions for shadow estimation with brickwork circuits , 2022, 2211.09835.

[3]  J. Eisert,et al.  Shallow shadows: Expectation estimation using low-depth random Clifford circuits , 2022, 2209.12924.

[4]  G. Low Classical shadows of fermions with particle number symmetry , 2022, 2208.08964.

[5]  R. Kueng,et al.  The randomized measurement toolbox , 2022, Nature Reviews Physics.

[6]  Sisi Zhou,et al.  Shadow Distillation: Quantum Error Mitigation with Classical Shadows for Near-Term Quantum Processors , 2022, PRX Quantum.

[7]  E. Rieffel,et al.  Logical shadow tomography: Efficient estimation of error-mitigated observables , 2022, 2203.07263.

[8]  A. Jaffe,et al.  Classical shadows with Pauli-invariant unitary ensembles , 2022, npj Quantum Information.

[9]  Stefan H. Sack,et al.  Avoiding Barren Plateaus Using Classical Shadows , 2022, PRX Quantum.

[10]  T. Lahaye,et al.  A randomized measurement toolbox for Rydberg quantum technologies , 2021, 2112.11046.

[11]  Chenhua Geng,et al.  Differentiable programming of isometric tensor networks , 2021, Mach. Learn. Sci. Technol..

[12]  B. Clark,et al.  Classical Shadows for Quantum Process Tomography on Near-term Quantum Computers , 2021, 2110.02965.

[13]  Soonwon Choi,et al.  Classical shadow tomography with locally scrambled quantum dynamics , 2021, Physical Review Research.

[14]  Yi-Zhuang You,et al.  Hamiltonian-Driven Shadow Tomography of Quantum States , 2021, Physical Review Research.

[15]  F. Verstraete,et al.  Matrix product states and projected entangled pair states: Concepts, symmetries, theorems , 2020, Reviews of Modern Physics.

[16]  D. E. Koh,et al.  Classical Shadows with Noise , 2020, Quantum.

[17]  S. Flammia,et al.  Robust Shadow Estimation , 2020, PRX Quantum.

[18]  A. Miyake,et al.  Fermionic Partial Tomography via Classical Shadows. , 2020, Physical review letters.

[19]  J. Haegeman,et al.  Riemannian optimization of isometric tensor networks , 2020, SciPost Physics.

[20]  Rudy Raymond,et al.  Measurements of Quantum Hamiltonians with Locally-Biased Classical Shadows , 2020, Communications in Mathematical Physics.

[21]  Yi-Zhuang You,et al.  Multiregion entanglement in locally scrambled quantum dynamics , 2020, 2006.08797.

[22]  P. Zoller,et al.  Many-Body Chern Number from Statistical Correlations of Randomized Measurements. , 2020, Physical review letters.

[23]  A. Vishwanath,et al.  Self-organized error correction in random unitary circuits with measurement , 2020, 2002.12385.

[24]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[25]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[26]  Yi-Zhuang You,et al.  Markovian entanglement dynamics under locally scrambled quantum evolution , 2019, Physical Review B.

[27]  Amir Kalev,et al.  An approximate description of quantum states , 2019, 1910.10543.

[28]  X. Qi,et al.  Quantum Error Correction in Scrambling Dynamics and Measurement-Induced Phase Transition. , 2019, Physical review letters.

[29]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[30]  Soonwon Choi,et al.  Theory of the phase transition in random unitary circuits with measurements , 2019, Physical Review B.

[31]  Guy N. Rothblum,et al.  Gentle measurement of quantum states and differential privacy , 2019, Electron. Colloquium Comput. Complex..

[32]  Joel A. Tropp,et al.  Fast state tomography with optimal error bounds , 2018, Journal of Physics A: Mathematical and Theoretical.

[33]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[34]  T. Zhou,et al.  Quantum chaos dynamics in long-range power law interaction systems , 2018, Physical Review B.

[35]  T. Zhou,et al.  Operator dynamics in a Brownian quantum circuit. , 2018, Physical review. E.

[36]  Shenglong Xu,et al.  Locality, Quantum Fluctuations, and Scrambling , 2018, Physical Review X.

[37]  T. Zhou,et al.  Emergent statistical mechanics of entanglement in random unitary circuits , 2018, Physical Review B.

[38]  Yingfei Gu,et al.  Entanglement features of random Hamiltonian dynamics , 2018, Physical Review B.

[39]  S. Shenker,et al.  Onset of random matrix behavior in scrambling systems , 2018, Journal of High Energy Physics.

[40]  Scott Aaronson,et al.  Shadow tomography of quantum states , 2017, Electron. Colloquium Comput. Complex..

[41]  Zhao Yang,et al.  Machine Learning Spatial Geometry from Entanglement Features , 2017, 1709.01223.

[42]  Jeongwan Haah,et al.  Operator Spreading in Random Unitary Circuits , 2017, 1705.08975.

[43]  Jeongwan Haah,et al.  Quantum Entanglement Growth Under Random Unitary Dynamics , 2016, 1608.06950.

[44]  Ryan O'Donnell,et al.  Efficient quantum tomography , 2015, STOC.

[45]  Xiaodi Wu,et al.  Sample-Optimal Tomography of Quantum States , 2015, IEEE Transactions on Information Theory.

[46]  Tarun Grover,et al.  Entanglement and the sign structure of quantum states , 2014, 1412.3534.

[47]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[48]  Steven T. Flammia,et al.  Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.

[49]  J. Eisert,et al.  Efficient and feasible state tomography of quantum many-body systems , 2012, 1204.5735.

[50]  P. Hayden,et al.  Towards the fast scrambling conjecture , 2011, Journal of High Energy Physics.

[51]  Igor Sfiligoi,et al.  The Pilot Way to Grid Resources Using glideinWMS , 2009, 2009 WRI World Congress on Computer Science and Information Engineering.

[52]  Paul Avery,et al.  The Open Science Grid , 2007 .

[53]  G. D’Ariano,et al.  Optimal data processing for quantum measurements. , 2006, Physical review letters.

[54]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[55]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[56]  Andrew G. White,et al.  On the measurement of qubits , 2001, quant-ph/0103121.

[57]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[58]  Thomas G. Dietterich,et al.  In Advances in Neural Information Processing Systems 12 , 1991, NIPS 1991.

[59]  (2018). Many-body chaos and energy dynamics in holography. Journal of High Energy Physics, (2018), , 2022 .