A direct electrochemical substitution electrodialytic system for CO2 conversion into high value-added soda

[1]  Hongyi Gao,et al.  Direct Z-scheme heterojunction of PCN-222/CsPbBr3 for boosting photocatalytic CO2 reduction to HCOOH , 2023, Chemical Engineering Journal.

[2]  T. Xu,et al.  Asymmetric bipolar membrane electrodialysis for acid and base production , 2022, AIChE Journal.

[3]  T. A. Hatton,et al.  Redox-tunable Lewis bases for electrochemical carbon dioxide capture , 2022, Nature Energy.

[4]  Alexander W. Dowling,et al.  Challenges and Opportunities in Converting CO2 to Carbohydrates , 2022, ACS Energy Letters.

[5]  T. Xu,et al.  Electrodialysis for the volume reduction of the simulated radionuclides containing seawater. , 2022, Journal of hazardous materials.

[6]  L. Lange,et al.  Effect of electrolyte solution recycling on the potassium recovery from vinasse by integrated electrodialysis and K-struvite precipitation processes , 2022, Chemical Engineering Journal.

[7]  Qiang-bing Wang,et al.  Water coordinated on Cu(I)-based catalysts is the oxygen source in CO2 reduction to CO , 2022, Nature Communications.

[8]  Christine M. Gabardo,et al.  A microchanneled solid electrolyte for carbon-efficient CO2 electrolysis , 2022, Joule.

[9]  S. Basu,et al.  Two-dimensional ultrathin metal-based nanosheets for photocatalytic CO2 conversion to solar fuels. , 2022, Journal of environmental management.

[10]  Haiyang Yang,et al.  Deep Eutectic Solvent Based Adhesive with Dynamic Adhesion, Water-Resistant and Nir-Responsive Retrieval Properties , 2022, SSRN Electronic Journal.

[11]  Xiangwu Meng,et al.  A Green and Economical Method for Preparing Potassium Glutamate through Electrodialysis Metathesis , 2022, Industrial & Engineering Chemistry Research.

[12]  S. Basu,et al.  Photocatalytic conversion of CO2 into valuable products using emerging two-dimensional graphene-based nanomaterials: A step towards sustainability , 2021 .

[13]  A. Al-Marzouqi,et al.  Electrodialysis based waste utilization methodology for the desalination industry , 2021, Desalination.

[14]  Christine M. Gabardo,et al.  Downstream of the CO2 Electrolyzer: Assessing the Energy Intensity of Product Separation , 2021, ACS Energy Letters.

[15]  Zhenmin Cheng,et al.  Metal Oxide‐Doped Ni/ CaO Dual‐Function Materials for Integrated CO 2 Capture and Conversion: Performance and Mechanism , 2021, AIChE Journal.

[16]  H. Atwater,et al.  Coupling electrochemical CO2 conversion with CO2 capture , 2021, Nature Catalysis.

[17]  Xiangping Zhang,et al.  State‐of‐the‐art of ionic liquid‐modified adsorbents for CO 2 capture and separation , 2021, AIChE Journal.

[18]  R. Dewil,et al.  Biochar in water and wastewater treatment - a sustainability assessment , 2021 .

[19]  V. Manović,et al.  Effect of combined primary and secondary amine loadings on the adsorption mechanism of CO2 and CH4 in biogas , 2021 .

[20]  Jing Hou,et al.  Integrated Capture and Electroreduction of Flue Gas CO2 to Formate Using Amine Functionalized SnOx Nanoparticles , 2021, ACS Energy Letters.

[21]  S. Basu,et al.  Photocatalytic Carbon Dioxide Reduction: Exploring the Role of Ultrathin 2D Graphitic Carbon Nitride (g-C3N4) , 2021 .

[22]  Shuo Duan,et al.  Dynamics adsorption of the enhanced CH 4 recovery by CO 2 injection , 2021 .

[23]  Kai Zhang,et al.  Advances and Challenges for Electrochemical Reduction of CO2 to CO: From Fundamental to Industrialization. , 2021, Angewandte Chemie.

[24]  Yang Hou,et al.  A visible light-response flower-like La-doped BiOBr nanosheets with enhanced performance for photoreducing CO2 to CH3OH , 2021 .

[25]  B. Han,et al.  Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation , 2021, National science review.

[26]  C. Xiang,et al.  Electrochemical carbon dioxide capture to close the carbon cycle , 2020, Energy & Environmental Science.

[27]  Woosung Choi,et al.  Structural effects of amine polymers on stability and energy efficiency of adsorbents in post-combustion CO2capture , 2020 .

[28]  H. Atwater,et al.  A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater , 2020, Nature Communications.

[29]  S. Verma,et al.  Integrating CO2 Electrolysis into the Gas-to-Liquids–Power-to-Liquids Process , 2020 .

[30]  T. Aminabhavi,et al.  Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes , 2020 .

[31]  J. Markoš,et al.  Electrodialysis applied for phenylacetic acid separation from organic impurities: Increasing the recovery , 2020 .

[32]  N. Shetti,et al.  Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: Synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes , 2020 .

[33]  Yaoxing Liu,et al.  Treatment of raffinate generated via copper ore hydrometallurgical processing using a bipolar membrane electrodialysis system , 2020 .

[34]  T. Breugelmans,et al.  Influence of flow and pressure distribution inside a gas diffusion electrode on the performance of a flow-by CO2 electrolyzer , 2019 .

[35]  T. A. Hatton,et al.  Faradaic electro-swing reactive adsorption for CO2 capture , 2019, Energy & Environmental Science.

[36]  Youhong Sun,et al.  CO2/N2 injection into CH4 + C3H8 hydrates for gas recovery and CO2 sequestration , 2019, Chemical Engineering Journal.

[37]  P. Luis,et al.  Advanced Amino Acid-Based Technologies for CO2 Capture: A Review , 2019, Industrial & Engineering Chemistry Research.

[38]  Anthony F. Hollenkamp,et al.  CO2 regenerative battery for energy harvesting from ammonia-based post-combustion CO2 capture , 2019, Applied Energy.

[39]  Heping Xie,et al.  Soda Ash Production with Low Energy Consumption Using Proton Cycled Membrane Electrolysis , 2019, Industrial & Engineering Chemistry Research.

[40]  Dunfeng Gao,et al.  Structure- and Electrolyte-Sensitivity in CO2 Electroreduction. , 2018, Accounts of chemical research.

[41]  Haiyang Yang,et al.  A monolithic anti-freezing hydro/organo Janus actuator with sensitivity to the polarity of solvents , 2018, RSC advances.

[42]  Zhiwu Liang,et al.  Investigation mechanism of DEA as an activator on aqueous MEA solution for postcombustion CO2 capture , 2018 .

[43]  Peng Wang,et al.  CO2 separation using bipolar membrane electrodialysis , 2011 .

[44]  Hiroki Nagasawa,et al.  A new recovery process of carbon dioxide from alkaline carbonate solution via electrodialysis , 2009 .

[45]  Hongguang Jin,et al.  Recovery of CO2 with MEA and K2CO3 absorption in the IGCC system , 2004 .

[46]  A. Neubrand,et al.  Effects of Particle Size and Molecular Weight of Polyethylenimine on Properties of Nanoparticulate Silicon Dispersions , 2001 .

[47]  Hailong Cui,et al.  Capturing CO2 with NaOH solution from reject brine via an integrated technology based on bipolar membrane electrodialysis and hollow fiber membrane contactor , 2022, Chemical Engineering Journal.

[48]  J O S H U A,et al.  Carbon Dioxide Capture from Atmospheric Air Using Sodium Hydroxide Spray , 2008 .