^11C-methionine PET imaging characteristics in children with diffuse intrinsic pontine gliomas and relationship to survival and H3 K27M mutation status

[1]  A. Asher,et al.  Accuracy of Central Neuro-Imaging Review of DIPG Compared with Histopathology in the International DIPG Registry. , 2021, Neuro-oncology.

[2]  G. Reifenberger,et al.  The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. , 2021, Neuro-oncology.

[3]  F. Barkhof,et al.  Prediction of H3K27M-mutant brainstem glioma by amide proton transfer–weighted imaging and its derived radiomics , 2021, European Journal of Nuclear Medicine and Molecular Imaging.

[4]  G. Stoffels,et al.  Prognostic value of pre-irradiation FET PET in patients with not completely resectable IDH-wildtype glioma and minimal or absent contrast enhancement , 2021, Scientific Reports.

[5]  M. Severino,et al.  Correlation of multimodal 18F-DOPA PET and conventional MRI with treatment response and survival in children with diffuse intrinsic pontine gliomas , 2020, Theranostics.

[6]  C. Hawkins,et al.  MR Imaging features of Diffuse Intrinsic Pontine Glioma (DIPG) and Relationship to Overall Survival: Report from the International DIPG Registry. , 2020, Neuro-oncology.

[7]  T. Merchant,et al.  Clinical, imaging, and molecular analysis of pediatric pontine tumors lacking characteristic imaging features of DIPG , 2020, Acta Neuropathologica Communications.

[8]  M. Severino,et al.  Advanced MR imaging and 18F-DOPA PET characteristics of H3K27M-mutant and wild-type pediatric diffuse midline gliomas , 2019, European Journal of Nuclear Medicine and Molecular Imaging.

[9]  Ian Law,et al.  Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0 , 2018, European Journal of Nuclear Medicine and Molecular Imaging.

[10]  Elizabeth C. Duncan,et al.  Evaluation of 11C-Methionine PET and Anatomic MRI Associations in Diffuse Intrinsic Pontine Glioma , 2018, The Journal of Nuclear Medicine.

[11]  S. Vajapeyam,et al.  Correlation of 18F-FDG PET and MRI Apparent Diffusion Coefficient Histogram Metrics with Survival in Diffuse Intrinsic Pontine Glioma: A Report from the Pediatric Brain Tumor Consortium , 2017, The Journal of Nuclear Medicine.

[12]  I. Kovanlikaya,et al.  The Added Prognostic Value of Metabolic Tumor Size on FDG‐PET at First Suspected Recurrence of Glioblastoma Multiforme , 2017, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[13]  A. Bizzi,et al.  Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma , 2017, European Journal of Nuclear Medicine and Molecular Imaging.

[14]  A. Szathmári,et al.  Pre-radiation chemotherapy improves survival in pediatric diffuse intrinsic pontine gliomas , 2016, Child's Nervous System.

[15]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[16]  A. Panigrahy,et al.  Apparent diffusion coefficient histogram metrics correlate with survival in diffuse intrinsic pontine glioma: a report from the Pediatric Brain Tumor Consortium. , 2016, Neuro-oncology.

[17]  T. Shiga,et al.  Prognostic value of volume-based measurements on 11C-methionine PET in glioma patients , 2015, European Journal of Nuclear Medicine and Molecular Imaging.

[18]  F. Barkhof,et al.  Survival prediction model of children with diffuse intrinsic pontine glioma based on clinical and radiological criteria. , 2014, Neuro-oncology.

[19]  K. Yeom,et al.  Diffusion-weighted MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine glioma , 2014, Journal of Neuro-Oncology.

[20]  T. Gupta,et al.  Can Multiparametric MRI and FDG-PET Predict Outcome in Diffuse Brainstem Glioma? A Report from a Prospective Phase-II Study , 2014, Pediatric Neurosurgery.

[21]  David T. W. Jones,et al.  K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas , 2012, Acta Neuropathologica.

[22]  W. Vandertop,et al.  Diffuse intrinsic pontine gliomas: a systematic update on clinical trials and biology. , 2012, Cancer treatment reviews.

[23]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[24]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[25]  D. Hammoud,et al.  Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. , 2011, Neuro-oncology.

[26]  J. Shih,et al.  Proton magnetic resonance spectroscopy predicts survival in children with diffuse intrinsic pontine glioma , 2011, Journal of Neuro-Oncology.

[27]  S. Khatua,et al.  Diffuse intrinsic pontine glioma—current status and future strategies , 2011, Child's Nervous System.

[28]  A. Alavi,et al.  Evaluation of 18F-FDG PET and MRI Associations in Pediatric Diffuse Intrinsic Brain Stem Glioma: A Report from the Pediatric Brain Tumor Consortium , 2011, The Journal of Nuclear Medicine.

[29]  T. Tamiya,et al.  Correlation of l-methyl-11C-methionine (MET) uptake with l-type amino acid transporter 1 in human gliomas , 2010, Journal of Neuro-Oncology.

[30]  J. Brandon,et al.  Conventional MRI at presentation does not predict clinical response to radiation therapy in children with diffuse pontine glioma , 2009, Pediatric Radiology.

[31]  S. Ferman,et al.  Brainstem gliomas— Retrospective analysis of 86 patients , 2009, Journal of the Neurological Sciences.

[32]  N. Chuang,et al.  Conventional MRI cannot predict survival in childhood diffuse intrinsic pontine glioma , 2008, Journal of Neuro-Oncology.

[33]  Norbert Graf,et al.  Treatment options in childhood pontine gliomas , 2006, Journal of Neuro-Oncology.

[34]  K. Någren,et al.  Metabolic characterization of childhood brain tumors , 2002, Cancer.

[35]  Sörensen,et al.  3. Utility of PET and 11C-Methionine in the Paediatric Brain Tumors. , 2000, Clinical positron imaging : official journal of the Institute for Clinical P.E.T.

[36]  K. Ishiwata,et al.  Tumor uptake studies of S-adenosyl-L-[methyl-11C]methionine and L-[methyl-11C]methionine. , 1988, International journal of radiation applications and instrumentation. Part B, Nuclear medicine and biology.