Density functional theory investigations of the structural and electronic properties of Ag2V4O11

We present Density Functional Theory (DFT) investigations in the General Gradient Approximation (GGA) of the structural and electronic properties of the Ag2V4O11 (SVO) compound. We carried out a detailed study of the different structures of SVO proposed in the literature, by comparing the results obtained using DFT and the DFT+U approach. We found that two of the proposed structures are equally probable, the third one being unstable. We have obtained detailed information concerning the structural and electronic properties of SVO, including previously non-existent information on one of the SVO structures, considered hypothetical yet probable in the light of experimental facts from analogous compounds. From the analysis of the electronic density of states and of the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) states, we propose that, during the earlier stage of the reaction of lithium insertion and de-insertion in Li/SVO primary batteries, the reduction of V5+ takes place before that of Ag. In addition, our results allow to predict that only one kind of vanadium atom would be firstly reduced.

[1]  E. Schröder,et al.  Role of van der Waals bonding in the layered oxide V2O5: First-principles density-functional calculations , 2010 .

[2]  J. Tarascon,et al.  Structural and transport evolution in the LixAg2V4O11 system , 2010 .

[3]  J. Galy,et al.  Ionic diffusion mastering using crystal-chemistry parameters: τ-Cu1/2Ag1/2V2O5 structure determination and comparison with refined δ-AgxV2O5 and ε-CuxV2O5 ones , 2009 .

[4]  M. Yashima,et al.  Electronic structure and magnetic properties of monoclinic β-Cu2V2O7 : A GGA+U study , 2009 .

[5]  J. Hafner,et al.  Relative stability of low-index V2O5 surfaces: a density functional investigation , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  Haoshen Zhou,et al.  Lithium insertion in ultra-thin nanobelts of Ag2V4O11/Ag , 2008 .

[7]  Joachim Sauer,et al.  Application of semiempirical long‐range dispersion corrections to periodic systems in density functional theory , 2008, J. Comput. Chem..

[8]  C. Tablero Representations of the occupation number matrix on the LDA/GGA+U method , 2008 .

[9]  A. Walsh,et al.  An ab initio Study of Reduction of V2O5 through the Formation of Oxygen Vacancies and Li Intercalation , 2008 .

[10]  S. Streltsov,et al.  Density-functional calculation of the Coulomb repulsion and correlation strength in superconducting LaFeAsO , 2008 .

[11]  Kristin A. Persson,et al.  Computational and experimental investigation of the transformation of V2O5 under pressure , 2007 .

[12]  M. V. Ganduglia-Pirovano,et al.  Formation of the cerium orthovanadate CeVO4 : DFT+ U study , 2007 .

[13]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[14]  C. Minot,et al.  Effect of Alkali Doping on a V2O5/TiO2 Catalyst from Periodic DFT Calculations , 2007 .

[15]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[16]  Weiyang Li,et al.  Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures. , 2006, The journal of physical chemistry. B.

[17]  M. Mastragostino,et al.  MW-assisted synthesis of SVO for ICD primary batteries , 2006 .

[18]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[19]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[20]  M. Altarelli,et al.  Surface magnetism of Rh(001) from LDA+U calculations , 2006, cond-mat/0603127.

[21]  B. Popov,et al.  Discharge characteristics of silver vanadium oxide cathodes , 2006 .

[22]  J. VandeVondele,et al.  Large Scale Condensed Matter Calculations using the Gaussian and Augmented Plane Waves Method , 2006 .

[23]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[24]  K. Knížek,et al.  Spin state of La Co O 3 : Dependence on Co O 6 octahedra geometry , 2005 .

[25]  M. Doublet,et al.  Leading interactions in the β − Sr V 6 O 15 compound , 2005, cond-mat/0502107.

[26]  J. Tarascon,et al.  Cu1.1V4O11: A new positive electrode material for rechargeable Li batteries , 2005 .

[27]  Joachim Sauer,et al.  Stability of reduced V 2 O 5 ( 001 ) surfaces , 2004 .

[28]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[29]  R. Leising,et al.  Advanced lithium batteries for implantable medical devices: mechanistic study of SVO cathode synthesis , 2003 .

[30]  Z. Popović,et al.  A comparative study of coulomb-correlated electronic structure of the spin-gapped compound α'-NaV2O5 in Pmmn and P21mn crystal structure , 2002 .

[31]  E. Takeuchi,et al.  Lithium Batteries for Biomedical Applications , 2002 .

[32]  N. Suaud,et al.  Ab initio evaluation of the charge ordering in alpha'NaV2O5. , 2001, Physical review letters.

[33]  K. Takeuchi Silver vanadium oxides and related battery applications , 2001 .

[34]  M. Onoda,et al.  Crystal structure and electronic properties of the Ag2V4O11 insertion electrode , 2001 .

[35]  J. Gale,et al.  A theoretical study of lithium intercalation into V6O13—a combined classical, quantum mechanical approach , 2001 .

[36]  P. Fulde,et al.  Elektronic structure and exchange coupling in α'-NaV2O5 , 2000 .

[37]  Y. Katayama,et al.  Preparation and characteristics of (NayAg1-y)2V4O11 for lithium secondary battery cathodes , 1998 .

[38]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[41]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[42]  G. Nolze,et al.  POWDER CELL– a program for the representation and manipulation of crystal structures and calculation of the resulting X‐ray powder patterns , 1996 .

[43]  J. Galy,et al.  β AgVO3Crystal Structure and Relationships with Ag2V4O11and δ AgxV2O5 , 1996 .

[44]  M. Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1995, Physical review. B, Condensed matter.

[45]  J. Šponer,et al.  Density functional theory and molecular clusters , 1995, Journal of Computational Chemistry.

[46]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[47]  P. Skarstad,et al.  Characterization of silver vanadium oxide cathode material by high-resolution electron microscopy , 1995 .

[48]  José M. Pérez-Jordá,et al.  A density-functional study of van der Waals forces: rare gas diatomics. , 1995 .

[49]  E. Takeuchi,et al.  Solid-State Characterization of Reduced Silver Vanadium-Oxide from the Li/Svo Discharge Reaction , 1994 .

[50]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[51]  H. Zandbergen,et al.  Two Structures of Ag2-xV4O11, Determined by High Resolution Electron Microscopy , 1994 .

[52]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[53]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[54]  A. Ignatiev,et al.  Formation and characterization of thin film vanadium oxides : auger electron spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, and optical reflectance studies , 1991 .

[55]  S. Cogan,et al.  Optical properties of electrochromic vanadium pentoxide , 1989 .

[56]  J. Galy,et al.  A refinement of the structure of V2O5 , 1986 .

[57]  J. Galy,et al.  Structure cristalline du bronze de vanadium CuxV4O11 , 1971 .

[58]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[59]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .