Reversibility of Computations in Graph-Walking Automata

The paper proposes a general notation for deterministic automata traversing finite undirected structures: the graph-walking automata. This abstract notion covers such models as two-way finite automata, including their multi-tape and multi-head variants, tree-walking automata and their extension with pebbles, picture-walking automata, space-bounded Turing machines, etc. It is then demonstrated that every graph-walking automaton can be transformed to an equivalent reversible graph-walking automaton, so that every step of its computation is logically reversible. This is done with a linear blow-up in the number of states, where the linear factor depends on the degree of graphs being traversed. The construction directly applies to all basic models covered by this abstract notion.

[1]  Jean-Éric Pin On the Language Accepted by Finite Reversible Automata , 1987, ICALP.

[2]  Wolfgang Thomas On Logics, Tilings, and Automata , 1991, ICALP.

[3]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[4]  Kenichi Morita Reversibility in space-bounded computation , 2014, Int. J. Gen. Syst..

[5]  L. Budach Automata and Labyrinths , 1978 .

[6]  Joost Engelfriet,et al.  Automata with Nested Pebbles Capture First-Order Logic with Transitive Closure , 2007, Log. Methods Comput. Sci..

[7]  Anca Muscholl,et al.  Complementing deterministic tree-walking automata , 2006, Inf. Process. Lett..

[8]  Sylvain Lombardy On the Construction of Reversible Automata for Reversible Languages , 2002, ICALP.

[9]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[10]  Frantisek Mráz,et al.  Restarting Automata , 1995, FCT.

[11]  Tero Harju,et al.  The Equivalence Problem of Multitape Finite Automata , 1991, Theor. Comput. Sci..

[12]  Robert Glück,et al.  Principles of a reversible programming language , 2008, CF '08.

[13]  Jarkko Kari,et al.  A Survey on Picture-Walking Automata , 2011, Algebraic Foundations in Computer Science.

[14]  Martin Kutrib,et al.  One-way reversible multi-head finite automata , 2012, Theor. Comput. Sci..

[15]  Samson Abramsky,et al.  A Structural Approach to Reversible Computation , 2005, Theor. Comput. Sci..

[16]  Pierre-Cyrille Héam A Lower Bound For Reversible Automata , 2000, RAIRO Theor. Informatics Appl..

[17]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[18]  Giora Slutzki,et al.  Parallel and Two-Way Automata on Directed Ordered Acyclic Graphs , 1981, Inf. Control..

[19]  Tobias Mömke,et al.  Size complexity of rotating and sweeping automata , 2012, J. Comput. Syst. Sci..

[20]  Pierre McKenzie,et al.  Reversible space equals deterministic space , 1997, Proceedings of Computational Complexity. Twelfth Annual IEEE Conference.

[21]  N. Margolus,et al.  Invertible cellular automata: a review , 1991 .

[22]  Christos H. Papadimitriou,et al.  Reversible Simulation of Space-Bounded Computations , 1995, Theor. Comput. Sci..

[23]  Joost Engelfriet,et al.  Tree-Walking Pebble Automata , 1999, Jewels are Forever.

[24]  Thomas Colcombet,et al.  Tree-Walking Automata Cannot Be Determinized , 2006, ICALP.

[25]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[26]  Thomas Colcombet,et al.  Tree-Walking Automata Do Not Recognize All Regular Languages , 2008, SIAM J. Comput..

[27]  Michael Sipser,et al.  Halting space-bounded computations , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[28]  M. Blum,et al.  Automata on a 2-Dimensional Tape , 1967, SWAT.

[29]  Alfred V. Aho,et al.  Translations on a Context-Free Grammar , 1971, Inf. Control..

[30]  Holger Bock Axelsen Reversible Multi-head Finite Automata Characterize Reversible Logarithmic Space , 2012, LATA.

[31]  Amr Elmasry,et al.  Space-efficient Basic Graph Algorithms , 2015, STACS.

[32]  Jeffrey D. Ullman,et al.  Some Results on Tape-Bounded Turing Machines , 1969, JACM.

[33]  Kenichi Morita A Deterministic Two-Way Multi-head Finite Automaton Can Be Converted into a Reversible One with the Same Number of Heads , 2012, RC.

[34]  Desh Ranjan,et al.  Space Bounded Computations: Review And New Separation Results , 1989, MFCS.

[35]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[36]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[37]  Martin Kutrib,et al.  Complexity of multi-head finite automata: Origins and directions , 2011, Theor. Comput. Sci..

[38]  Andrzej Pelc,et al.  Graph exploration by a finite automaton , 2005, Theor. Comput. Sci..

[39]  Thomas Schwentick,et al.  Expressive Power of Pebble Automata , 2006, ICALP.

[40]  Kenichi Morita,et al.  Two-Way Reversible Multi-Head Finite Automata , 2011, Fundam. Informaticae.

[41]  Carlo Mereghetti,et al.  Complementing two-way finite automata , 2007, Inf. Comput..

[42]  Martin Kutrib,et al.  Reversible pushdown automata , 2012, J. Comput. Syst. Sci..

[43]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[44]  Alexander Okhotin,et al.  Describing Periodicity in Two-Way Deterministic Finite Automata Using Transformation Semigroups , 2011, Developments in Language Theory.

[45]  Juraj Hromkovic,et al.  Lower Bounds on the Size of Sweeping Automata , 2009, J. Autom. Lang. Comb..

[46]  David Harel,et al.  Complexity Results for Two-Way and Multi-Pebble Automata and their Logics , 1996, Theor. Comput. Sci..

[47]  Harry Buhrman,et al.  Time and Space Bounds for Reversible Simulation , 2001, ICALP.

[48]  Ming Li,et al.  Reversible simulation of irreversible computation , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[49]  Jarkko Kari,et al.  Reversible Cellular Automata , 2005, Developments in Language Theory.