Modulation and coding for the Gaussian collision channel

We study signal-space coding for coherent slow frequency-hopped communications over a Gaussian multiple-access collision channel (G-MACC). We define signal sets and interleavers having maximum collision resistance. The packet-error probability and the spectral efficiency obtained by these signal sets concatenated with outer block coding and hard (error-only) decoding is evaluated without assuming perfect interleaving. Closed-form expressions are provided and computer simulations show perfect agreement with analysis. The structure of good interleavers is also discussed. More generally, we present expressions for the information outage probability and for the achievable (ergodic) rate of the G-MACC at hand, under various assumptions on user coding and decoding strategies. The outage probability yields the limiting packet-error probability with finite interleaving depth (delay-limited systems). The achievable rate yields the limiting system spectral efficiency for large interleaving depth (delay-unconstrained systems). Comparisons with other classical multiple-access schemes are provided.

[1]  Aaron D. Wyner,et al.  Shannon-theoretic approach to a Gaussian cellular multiple-access channel , 1994, IEEE Trans. Inf. Theory.

[2]  J. Bibb Cain,et al.  Error-Correction Coding for Digital Communications , 1981 .

[3]  Wayne E. Stark,et al.  Optimum rate Reed-Solomon codes for frequency-hopped spread-spectrum multiple-access communication systems , 1989, IEEE Trans. Commun..

[4]  Giuseppe Caire,et al.  Improving performance of wireless networks using collision resistent modulations , 1998, IEEE GLOBECOM 1998 (Cat. NO. 98CH36250).

[5]  Leonard Kleinrock,et al.  Packet Switching in a Multiaccess Broadcast Channel: Performance Evaluation , 1975, IEEE Trans. Commun..

[6]  Patrick Billingsley,et al.  Probability and Measure. , 1986 .

[7]  Erich Lutz Slotted Aloha multiple access and error control coding for land mobile satellite networks , 1992 .

[8]  Emanuele Viterbo,et al.  Good lattice constellations for both Rayleigh fading and Gaussian channels , 1996, IEEE Trans. Inf. Theory.

[9]  Shlomo Shamai,et al.  Spectral Efficiency of CDMA with Random Spreading , 1999, IEEE Trans. Inf. Theory.

[10]  Michael B. Pursley Frequency-hop transmission for satellite packet switching and terrestrial packet radio networks , 1986, IEEE Trans. Inf. Theory.

[11]  Jens C. Arnbak,et al.  Capacity of Slotted ALOHA in Rayleigh-Fading Channels , 1987, IEEE J. Sel. Areas Commun..

[12]  Bhaskar Ramamurthi,et al.  Packet reservation multiple access for local wireless communications , 1989, IEEE Trans. Commun..

[13]  David Tse,et al.  Linear Multiuser Receivers: Effective Interference, Effective Bandwidth and User Capacity , 1999, IEEE Trans. Inf. Theory.

[14]  John G. Proakis,et al.  Digital Communications , 1983 .

[15]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[16]  Alex J. Grant,et al.  Collision-type multiple-user communications , 1997, IEEE Trans. Inf. Theory.

[17]  Upamanyu Madhow,et al.  MMSE interference suppression for direct-sequence spread-spectrum CDMA , 1994, IEEE Trans. Commun..

[18]  Shlomo Shamai,et al.  Information theoretic considerations for cellular mobile radio , 1994 .

[19]  P. Billingsley,et al.  Probability and Measure , 1980 .

[20]  Giuseppe Caire,et al.  System capacity of F-TDMA cellular systems , 1997, GLOBECOM 97. IEEE Global Telecommunications Conference. Conference Record.

[21]  A. Viterbi CDMA: Principles of Spread Spectrum Communication , 1995 .

[22]  Sergio Verdú,et al.  Linear multiuser detectors for synchronous code-division multiple-access channels , 1989, IEEE Trans. Inf. Theory.

[23]  Giuseppe Caire,et al.  Linear block codes over cyclic groups , 1995, IEEE Trans. Inf. Theory.

[24]  Marco Chiani Error probability for block codes over channels with block interference , 1996, Proceedings of GLOBECOM'96. 1996 IEEE Global Telecommunications Conference.

[25]  Steven Roman,et al.  Coding and information theory , 1992 .

[26]  James L. Massey,et al.  The collision channel without feedback , 1985, IEEE Trans. Inf. Theory.

[27]  Emanuele Viterbo,et al.  Signal Space Diversity: A Power- and Bandwidth-Efficient Diversity Technique for the Rayleigh Fading Channel , 1998, IEEE Trans. Inf. Theory.

[28]  Shlomo Shamai,et al.  Error Exponents And Outage Probabilities For The Block-Fading Gaussian Channel , 1991, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications..

[29]  Elaine Wong,et al.  Optimal Multicopy Aloha , 1994 .

[30]  Norman Abramson,et al.  The ALOHA System-Another Alternative for Computer Communications , 1899 .

[31]  G. David Forney,et al.  Geometrically uniform codes , 1991, IEEE Trans. Inf. Theory.

[32]  Mitchell D. Trott,et al.  The dynamics of group codes: State spaces, trellis diagrams, and canonical encoders , 1993, IEEE Trans. Inf. Theory.

[33]  Y.-W. Leung Generalised multicopy ALOHA , 1995 .

[34]  Wayne E. Stark,et al.  Channels with block interference , 1984, IEEE Trans. Inf. Theory.

[35]  David J. Goodman,et al.  Performance of PRMA: a packet voice protocol for cellular systems , 1991 .

[36]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[37]  S. Shamai,et al.  Error probabilities for the block-fading Gaussian channel , 1995 .

[38]  Mahesh K. Varanasi,et al.  Bandwidth-E cient Multiple-Access via Signal Design for Decision-Feedback Receivers: Towards an Optimal Spreading-Coding Trade-O , 1998 .

[39]  Rüdiger L. Urbanke,et al.  A rate-splitting approach to the Gaussian multiple-access channel , 1996, IEEE Trans. Inf. Theory.

[40]  Mohsen Kavehrad,et al.  ALOHA with capture over slow and fast fading radio channels with coding and diversity , 1989, IEEE J. Sel. Areas Commun..