Structure and Microwave Dielectric Properties of Ca_1−xY_xTi_1−xAl_xO_3 (CYTA) Ceramics

The structure and dielectric properties of Ca 1− x Y x Ti 1− x Al x O 3 (CYTA) ceramics prepared by the mixed-oxide route have been investigated. CYTA forms a complete solid solution with an orthorhombic perovskite structure. Residual Y 4 Al 2 O 9 and Y 3 Al 5 O 12 resulting from incomplete reaction are observed for ⩾ 0.9. Scanning electron microscopy shows that CYTA ceramics exhibit uniform microstructures, with an average grain size that decreases from ∼200 μm at x = 0 to ∼10 μm at x = 1.0. Transmission electron microscopy of CYTA ( x = 0.3) ceramics reveals the presence of ferroelastic domains, and electron-diffraction patterns are indexed on the Pnma space group, consistent with an a + b − b − octahedral tilted structure. The relative permittivity, ϵ r , decreases continuously from 170 to 12, while the microwave quality factor, Q·f r , increases from 10,000 to 12,000 GHz, for x = 0 and 1, respectively. CYTA ( x = 0.30) ceramics exhibit ϵ r ∼ 38, Q·f r of ∼14,212 GHz, and a temperature coefficient of resonance frequency, τ f , of −14 ppm/°C. Small additions of acceptor (0.3 wt% ZnO) or donor (1 wt% Nb 2 O 5 ) dopants decrease Q·f r by ∼20–30%, respectively.

[1]  I. Reaney,et al.  Electron diffraction of tilted perovskites. , 2005, Acta crystallographica. Section B, Structural science.

[2]  I. Reaney,et al.  High frequency dielectric properties of CaTiO3-based microwave ceramics , 2005 .

[3]  D. Suvorov,et al.  Solid-State Reactions Occurring during the Synthesis of CaTiO3−NdAlO3 Perovskite Solid Solutions , 2004 .

[4]  N. Alford,et al.  Microwave dielectric loss in oxides: Theory and experiment , 2004 .

[5]  N. Browning,et al.  Ferroelasticity in mixed conducting LaCoO3 based perovskites: a ferroelastic phase transition , 2003 .

[6]  D. Suvorov,et al.  Characterization of CaTiO3-NdAlO3 dielectric ceramics , 2003 .

[7]  Stanislav Kamba,et al.  Submillimetre and infrared response of microwave materials: extrapolation to microwave properties , 2003 .

[8]  N. F. Kartenko,et al.  Microwave dielectric properties of ceramics based on CaTiO3–LnMO3 System (Ln–La, Nd; M–Al, Ga) , 2003 .

[9]  R. Freer,et al.  Structural study of Ca0.7Nd0.3Ti0.7Al0.3O3 dielectric ceramics using synchrotron X-ray diffraction , 2003 .

[10]  Structure and microwave dielectric properties of La(Mg0.5Ti0.5)O3–CaTiO3 system , 2003 .

[11]  I. Reaney,et al.  Raman spectroscopy of B-site order-disorder in CaTiO3-based microwave ceramics , 2003 .

[12]  I. Levin,et al.  Phase equilibria and dielectric properties in perovskite-like (1 - x)LaCa0.5Zr0.5O3-xATiO3 (A = Ca, Sr) ceramics , 2002 .

[13]  I. Levin,et al.  Phase transitions and microwave dielectric properties in the perovskite-like Ca(Al0.5Nb0.5)O3−CaTiO3 system , 2001 .

[14]  D. Cannell,et al.  On the temperature coefficient of resonant frequency in microwave dielectrics , 2001 .

[15]  R. Cava Dielectric materials for applications in microwave communications , 2001 .

[16]  L. Bendersky,et al.  Octahedral tilting and cation ordering in perovskite-like Ca4Nb2O9 = 3.Ca(Ca1/3Nb2/3)O3 polymorphs , 2000 .

[17]  Ian M. Reaney,et al.  Talking Microwaves: A review of Ceramics at the Heart of the Telecommunications Network , 2000 .

[18]  Michael E. Tobar,et al.  Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures , 1999 .

[19]  Ju-woong Jang,et al.  Ferroelastic twins in LaAlO3 polycrystals , 1999 .

[20]  B. Chakoumakos,et al.  Phase transitions in perovskite at elevated temperatures - a powder neutron diffraction study , 1999 .

[21]  K. Hong,et al.  Microwave dielectric properties and applications of rare-earth aluminates , 1999 .

[22]  Wolfram Wersing,et al.  Microwave ceramics for resonators and filters , 1996 .

[23]  J. L. Baptista,et al.  Role of Niobium in Magnesium Titanate Microwave Dielectric Ceramics , 1996 .

[24]  U. Böttger,et al.  Dielectric Dispersion of Ferroelectric Ceramics and Single Crystals by Sound Generation in Piezoelectric Domains , 1995 .

[25]  I. Reaney,et al.  Dielectric and Structural Characteristics of Ba- and Sr-based Complex Perovskites as a Function of Tolerance Factor , 1994 .

[26]  Yanbin Wang,et al.  Electron microscopy study of domain structure due to phase transitions in natural perovskite , 1993 .

[27]  N. Ichinose,et al.  Microwave dielectric materials in the system (Sr1−xCax){Li14Nb34)1−yTiy}O3 , 1977 .

[28]  A. Glazer,et al.  Simple ways of determining perovskite structures , 1975 .

[29]  R. C. Kell,et al.  High‐Permittivity Temperature‐Stable Ceramic Dielectrics with Low Microwave Loss , 1973 .

[30]  W. E. Courtney,et al.  Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators , 1970 .

[31]  B. W. Hakki,et al.  A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range , 1960 .