Caracterización y Modelado de Dispositivos Semiconductores Para Uso en Sistemas de Telecomunicaciones a Frecuencias de Terahercios

espanolEl objetivo de esta tesis ha sido el estudio, la caracterizacion y el modelado de diodos Schottky, desde continua (DC) hasta la banda de frecuencia W. Se trata de diodos comerciales que se han desarrollado en Virginia Diodes: un diodo Schottky simple (SA), un diodo Zero Bias (ZBD) y una configuracion de dos diodos en antiparalelo. El modelado se ha realizado mediante una combinacion de medidas en continua, medidas en baja frecuencia, medidas de los parametros de scattering para dos rangos recuenciales (DC-50GHz, 75-110GHz), medidas Pin/Pout, y medidas del montaje de un conjunto de transiciones de coplanar a microstrip, unidas mediante hilos de �bonding� para llevar a cabo el proceso de obtencion de los parametros de los diodos y lograr sus modelos completos finales hasta 110GHz, medidas directas sobre el diodo utilizando puntas de prueba coplanares en los contactos del anodo y el catodo de los diodos, para verificar que la coherencia del modelo no se ve afectada por los efectos parasitos asociados a los hilos de �bonding�, y a las transiciones. Se ha realizado tambien un analisis completo del ruido de los diodos que incluye caracterizacion, medidas, modelado y simulacion, para examinar las propiedades de ruido en baja frecuencia de los diodos Schottky de GaAs. EnglishThe main goal of this thesis has been the study, discussion, characterization and modeling of a wideband Schottky diode, from Direct Current (DC) to W band, for three type of Schottky diode that have been developed at Virginia Diodes: a single Anode Schottky Diode, Zero Bias Diode (ZBD) and configuration of antiparalel Diode based on a commercial VDI chip. The modelling has been done using a combination of DC measurements, capacitance measurements, RF Scattering measurements, and measurements of the assembly of Coplanar to Microstrip bonded transitions has been performed and used to achieve the complete final diode model up to 110 GHz. Also, on chip (direct) measurements were done by placing a couple of probe tips on the anode and cathode pads of diodes to verify that the coherence of the model is not affected by the surrounding parasitic effects associated with wire bonding and transitions. A complete characterization, analysis, simulation and modeling of noise will be presented, to examine for the low-frequency noise properties of VDI�s GaAs Schottky diodes.

[1]  S. Montanari Fabrication and characterization of planar Gunn diodes for Monolithic Microwave Integrated Circuits , 2005 .

[2]  Ferdinand Braun,et al.  Ueber die Stromleitung durch Schwefelmetalle , 1875 .

[3]  R. Stratton,et al.  Field and thermionic-field emission in Schottky barriers , 1966 .

[4]  Christophe Berthod Electronic properties of ideal and engineered metal/semiconductor interfaces , 1999 .

[5]  S.M.Sze,et al.  Surface States and Barrier Height of Metal‐Semiconductor Systems , 1965 .

[6]  F. Yakuphanoglu,et al.  Determination of the interface state density of the In/p-Si Schottky diode by conductance and capacitance–frequency characteristics , 2007 .

[7]  W. Marsden I and J , 2012 .

[8]  C. D. Wang,et al.  Accurate electrical characterization of forward AC behavior of real semiconductor diode: giant negative capacitance and nonlinear interfacial layer , 2003 .

[9]  C. R. Crowell,et al.  Normalized thermionic-field (T-F) emission in metal-semiconductor (Schottky) barriers , 1969 .

[10]  D. W. Palmer,et al.  Characterisation of semiconductor heterostructures by capacitance methods , 1999 .

[11]  Donald A. Neamen Zhu Semiconductor physics and devices basic principles , 1991 .

[12]  A. Colquhoun,et al.  Technology related design of monolithic millimeter-wave Schottky diode mixers , 1992 .

[13]  C. R. Crowell,et al.  Photoelectric Determination of the Image Force Dielectric Constant For Hot Electrons in Schottky Barriers , 1964 .

[14]  M. Chevreton Introduction à la physique de l'état solide. Maîtrise de physique, par Ch. Kittel. Trad. par A. Honnart, 1970 , 1970 .

[15]  W. Schottky Halbleitertheorie der Sperrschicht , 1938 .

[16]  J. Larson,et al.  Overview and status of metal S/D Schottky-barrier MOSFET technology , 2006, IEEE Transactions on Electron Devices.

[17]  Juin J. Liou,et al.  Analysis and design of MOSFETs , 1998 .

[18]  A. Pollock C is for , 2007 .

[19]  Electronics Letters , 1965, Nature.

[20]  R. Han,et al.  Monte Carlo simulation of Schottky contact with direct tunnelling model , 2003 .

[21]  Rolf H Jansen,et al.  RF Characterization of Schottky Diodes in 65-nm CMOS , 2010, IEEE Transactions on Electron Devices.

[22]  S. Sze,et al.  Metal‐Semiconductor Contacts , 2006 .

[23]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[24]  B. Nijboer On the theory of electronic semiconductors , 1939 .

[25]  D. Salameh,et al.  Study of the relation between doping profile and diode CV characteristics , 1999 .

[26]  V. L. Rideout A review of the theory, technology and applications of metal-semiconductor rectifiers☆ , 1978 .

[27]  N. Mott Note on the contact between a metal and an insulator or semi-conductor , 1938 .

[28]  A. Raisanen,et al.  Comparison of low-frequency and microwave frequency capacitance determination techniques for mm-wave Schottky diodes , 2011, 2011 6th European Microwave Integrated Circuit Conference.

[29]  D. Scharfetter Minority carrier injection and charge storage in epitaxial Schottky barrier diodes , 1965 .

[30]  John Bardeen,et al.  Surface States and Rectification at a Metal Semi-Conductor Contact , 1947 .

[31]  J. Mallat,et al.  Characterisation of european millimetre-wave planar diodes , 2004, 34th European Microwave Conference, 2004..