Faithful quantum secure direct communication protocol against collective noise

An improved quantum secure direct communication (QSDC) protocol is proposed in this paper. Blocks of entangled photon pairs are transmitted in two steps in which secret messages are transmitted directly. The single logical qubits and unitary operations under decoherence free subspaces are presented and the generalized Bell states are constructed which are immune to the collective noise. Two steps of qubit transmission are used in this protocol to guarantee the security of communication. The security of the protocol against various attacks are discussed.

[1]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[2]  YuGuang Yang,et al.  Threshold quantum secure direct communication without entanglement , 2008 .

[3]  Guang-Can Guo,et al.  Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down-conversions , 2006 .

[4]  周萍,et al.  Quantum secure direct communication with quantum encryption based on pure entangled states , 2007 .

[5]  Yan Xia,et al.  Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding , 2007 .

[6]  Edo Waks,et al.  Security of quantum key distribution with entangled photons against individual attacks , 2000, quant-ph/0012078.

[7]  Kempe,et al.  Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.

[8]  Qing-yu Cai,et al.  Improving the capacity of the Boström-Felbinger protocol , 2003, quant-ph/0311168.

[9]  Song Jie,et al.  Secure Communication Based on Quantum Key , 2008 .

[10]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[11]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[12]  Zhou Hong-Yu,et al.  Economical quantum secure direct communication network with single photons , 2007 .

[13]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[14]  Fuguo Deng,et al.  Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity , 2008, 0805.0032.

[15]  Vlatko Vedral,et al.  Security of EPR-based quantum cryptography against incoherent symmetric attacks , 2001 .

[16]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[17]  Fuguo Deng,et al.  Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics , 2008, 0806.0115.

[18]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[19]  Shou Zhang,et al.  Secure direct communication based on secret transmitting order of particles , 2006, quant-ph/0601119.

[20]  Wang Chuan,et al.  Quantum secure direct communication and deterministic secure quantum communication , 2007 .

[21]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[22]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[23]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[24]  Jian Wang,et al.  Quantum secure direct communication based on order rearrangement of single photons , 2006, quant-ph/0603100.

[25]  Jie Song,et al.  Re-examining generalized teleportation protocol ☆ , 2007 .

[26]  Yu-Bo Sheng,et al.  Fault tolerant quantum key distribution based on quantum dense coding with collective noise , 2009, 0904.0056.

[27]  Shou Zhang,et al.  Controlled generation of four-photon polarization-entangled decoherence-free states with conventional photon detectors , 2009 .

[28]  M. Gomaa,et al.  Reaction of N1,N2-Diarylamidines with 2,3-Diphenylcyclopropenone , 2004 .

[29]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[30]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[31]  Jian-Wei Pan,et al.  Experimental realization of entanglement concentration and a quantum repeater. , 2003, Physical review letters.

[32]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.

[33]  G. Guo,et al.  Active phase compensation of quantum key distribution system , 2008 .

[34]  Qiao-Yan Wen,et al.  Comparing the efficiencies of different detect strategies in the ping-pong protocol , 2008 .

[35]  高嵩,et al.  Bifurcation phenomena of photodetached electron flux in parallel external fields , 2007 .

[36]  宋杰,et al.  Quantum secure direct communication protocol with blind polarization bases and particles' transmitting order , 2007 .