Properties of zinc‐phosphide junctions and interfaces

The phenomena occurring at the surface of bulk polycrystalline zinc phosphide and at interfaces of zinc‐phosphide‐based devices have been investigated. Electrical measurements of magnesium/zinc‐phosphide junctions formed on annealed zinc‐phosphide surfaces, and analyses of similar surfaces by Auger electron spectroscopy, indicate that loss of phosphorus from a very thin surface region is sufficient to severely degrade diode characteristics. Surface photovoltage measurements show that at the surface of as‐etched or as‐polished zinc phosphide, the energy bands are nearly flat. High‐frequency capacitance measurements of aluminum/aluminum‐oxide/zinc‐phosphide structures indicate that a high interface state density, greater than 1013 eV−1 cm−2, prevents barrier formation by pinning the surface Fermi level. These properties severely limit the applicability of zinc phosphide to electronic devices.

[1]  M. Bhushan,et al.  Polycrystalline Zn3P2 Schottky barrier solar cells , 1998 .

[2]  S. Kurita,et al.  Polycrystalline Zn3P2/Indium-Tin Oxide Solar Cells , 1983 .

[3]  A. Fahrenbruch,et al.  Transport mechanisms for Mg/Zn3P2 junctions , 1982 .

[4]  E. H. Nicollian,et al.  Mos (Metal Oxide Semiconductor) Physics and Technology , 1982 .

[5]  R. Bube,et al.  Single crystal growth of Zn3P2 , 1981 .

[6]  J. Misiewicz,et al.  Minority-Carrier Diffusion Length in Zn3P2 , 1981, 16. Mai.

[7]  M. Bhushan,et al.  Evidence of p/n homojunction formation in Zn3P2 , 1980 .

[8]  R. H. Williams,et al.  Metal contacts to clean and oxidized cadmium telluride and indium phosphide surfaces , 1980 .

[9]  N. C. Wyeth,et al.  Barrier heights of evaporated metal contacts on Zn3P2 , 1980 .

[10]  A. Fahrenbruch,et al.  Sputtered indium‐tin oxide/cadmium telluride junctions and cadmium telluride surfaces , 1980 .

[11]  R. H. Williams,et al.  Metal contacts to silicon and indium‐phosphide‐cleaved surfaces and the influence of intermediate adsorbed layers , 1979 .

[12]  P. Favennec,et al.  Al/Al2O3/InP MIS structures , 1979 .

[13]  N. C. Wyeth,et al.  Spectral response measurements of minority‐carrier diffusion length in Zn3P2 , 1979 .

[14]  F. Morin,et al.  An investigation of metal-insulator-semiconductor structures with Al2O3 insulating layers obtained by electron gun evaporation , 1978 .

[15]  R. H. Williams,et al.  The interaction of chlorine with indium phosphide surfaces , 1978 .

[16]  R. H. Williams,et al.  The influence of interfacial layers on the nature of gold contacts to silicon and indium phosphide , 1977 .

[17]  R. H. Williams,et al.  Cleaved surfaces of indium phosphide and their interfaces with metal electrodes , 1977 .

[18]  R. H. Williams,et al.  Interface states and the nature of metal-silicon contacts , 1977 .

[19]  R. H. Williams,et al.  Surface characterisation of indium phosphide , 1975 .

[20]  K. Masumoto,et al.  Physical and electronic properties of semiconducting solid solutions of the Cd3P2–Zn3P2 system , 1971 .

[21]  K. Rubinson,et al.  Vaporization of cadmium phosphide , 1967 .

[22]  A. Venkitaraman,et al.  The vaporization of zinc phosphide , 1967 .

[23]  G. Rosenblatt,et al.  Vaporization of Solids. Mechanism of Retarded Vaporization from a One‐Component Single Crystal , 1966 .

[24]  K. Mann,et al.  Mass Spectrometric Study of the Nonstoichiometric Vaporization of Cadmium Arsenide1 , 1964 .

[25]  L. Terman An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes , 1962 .

[26]  L. Szaro,et al.  Determination of minority-carrier diffusion length in Zn3P2 by surface photovoltage measurements , 1984 .

[27]  M. Bhushan Schottky solar cells on thin polycrystalline Zn3P2 films , 1982 .

[28]  J. Loferski,et al.  Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion , 1956 .