T-Warehousing for hazardous materials transportation

In recent years, a significant portion of material transported is harmful to human and environment. Thus, the transportation of hazardous materials (HazMat) and its potential consequences raise public interest typically when there is a release of hazardous materials due to an accident. In this paper, we introduce HazMat Trajectory Warehouse (TWarehousing) that can be used for near real time decision making in different applications domain, using MongoDB as a NoSQL database for scalable, fault-tolerant and distributed space time paths big data storage and processing system. The system components are integrated into an interoperable software infrastructure respecting intelligent transport systems architecture. This infrastructure is distributed and based on a service-oriented architecture. It is also scalable by integration of MongoDB with Hadoop for large-scale distributed data processing. RÉSUMÉ. Le transport des matières dangereuses et ses conséquences potentielles suscitent l’intérêt du public surtout quand il y a une libération de matières dangereuses due à un accident. Cet article traite l’entreposage des trajectoires et propose un modèle conceptuel de représentation de données trajectoires adaptable à plusieurs domaines d’application. Le domaine d’application concerné par cet article est celui du transport de matières dangereuses. Les composants système sont intégrés dans une infrastructure interopérable en respectant l’architecture des systèmes de transport intelligents. Cette infrastructure est distribuée et basée sur une architecture orientée services. Elle est également évolutive par l’intégration de MongoDB avec Hadoop pour le traitement de données distribuées à grande échelle.

[1]  Renzo Orsini,et al.  Trajectory Data Warehouses: Design and Implementation Issues , 2007, J. Comput. Sci. Eng..

[2]  A. MacEachren,et al.  Research Challenges in Geovisualization , 2001, KN - Journal of Cartography and Geographic Information.

[3]  Il-Yeol Song,et al.  An Analysis of Many-to-Many Relationships Between Fact and Dimension Tables in Dimensional Modeling , 2001, DMDW.

[4]  Ahmed Lbath,et al.  Moving Object Trajectories Meta-Model And Spatio-Temporal Queries , 2012, ArXiv.

[5]  Laura Spinsanti,et al.  St-Toolkit : A Framework for Trajectory Data Warehousing , 2011 .

[6]  Anne Doucet,et al.  Bases de données et Internet : modèles, langages et systèmes , 2001 .

[7]  Anne Doucet,et al.  Entrepôts de données et bases de données multidimensionnelles , 2001 .

[8]  Alex Holmes Hadoop in Practice , 2012 .

[9]  Nikos Pelekis,et al.  T-Warehouse: Visual OLAP analysis on trajectory data , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[10]  Fabio Porto,et al.  A conceptual view on trajectories , 2008, Data Knowl. Eng..

[11]  John Krumm,et al.  Hidden Markov map matching through noise and sparseness , 2009, GIS.

[12]  Kyung-Woo Kang,et al.  An Empirical Study of Hadoop Application running on Private Cloud Environment , 2013 .

[13]  Maria Luiza Machado Campos,et al.  Getting Users Involved in the Development of Data Warehouse Applications , 2002, DMDW.

[14]  Esteban Zimányi,et al.  Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications , 2010 .

[15]  Bo Xu,et al.  Moving objects databases: issues and solutions , 1998, Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).

[16]  Stefano Spaccapietra,et al.  A Hybrid Model and Computing Platform for Spatio-semantic Trajectories , 2010, ESWC.

[17]  Jiawei Han,et al.  Fundamentals of spatial data warehousing for geographic knowledge discovery , 2001 .

[18]  Olivier Teste Towards Conceptual Multidimensional Design in Decision Support Systems , 2010, ADBIS 2010.

[19]  Yannis Theodoridis,et al.  Geographic privacy-aware knowledge discovery and delivery , 2009, EDBT '09.

[20]  Shih-Lung Shaw,et al.  Revisiting Hägerstrand’s time-geographic framework for individual activities in the age of instant access , 2007 .

[21]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[22]  Mark Levene,et al.  Why is the snowflake schema a good data warehouse design? , 2003, Inf. Syst..

[23]  Jason Venner,et al.  Pro Hadoop , 2009 .

[24]  Ralf Hartmut Güting,et al.  SECONDO: an extensible DBMS architecture and prototype , 2004 .

[25]  Xiaofeng Meng,et al.  DSTTMOD : A Discrete Spatio-Temporal Trajectory Based Moving Object Database System , 2003 .