A maxima-tracking method for skeletonization from Euclidean distance function

A skeletonization algorithm based on the Euclidean distance function using the sequential maxima-tracking method is described which, when applied to a connected image, generates a connected skeleton composed of simple digital arcs. With a slight modification, the algorithm can preserve the more important features in the skeletal branches which touch the object boundary at corners. Therefore its application to shape recognition can be easily achieved.<<ETX>>

[1]  Albert M. Vossepoel,et al.  A note on "distance transformations in digital images" , 1988, Comput. Vis. Graph. Image Process..

[2]  Lawrence O'Gorman,et al.  K × K Thinning , 1990, Comput. Vis. Graph. Image Process..

[3]  Richard W. Hall,et al.  Fast parallel thinning algorithms: parallel speed and connectivity preservation , 1989, CACM.

[4]  P. Danielsson Euclidean distance mapping , 1980 .

[5]  Ronald H. Perrott,et al.  An improved parallel thinning algorithm , 1987, CACM.

[6]  Chung-Ta King,et al.  A two-scan algorithm and architecture to a root for morphological filters , 1990, Ninth Annual International Phoenix Conference on Computers and Communications. 1990 Conference Proceedings.

[7]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[8]  Petros Maragos,et al.  Morphological skeleton representation and coding of binary images , 1984, IEEE Trans. Acoust. Speech Signal Process..

[9]  Patrick Shen-Pei Wang,et al.  A comment on “a fast parallel algorithm for thinning digital patterns” , 1986, CACM.

[10]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[11]  Paul C. K. Kwok,et al.  A thinning algorithm by contour generation , 1988, CACM.

[12]  Gabriella Sanniti di Baja,et al.  A One-Pass Two-Operation Process to Detect the Skeletal Pixels on the 4-Distance Transform , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Zicheng Guo,et al.  Parallel thinning with two-subiteration algorithms , 1989, Commun. ACM.

[14]  Nabil Jean Naccache,et al.  SPTA: A proposed algorithm for thinning binary patterns , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[16]  Frank Y. Shih,et al.  Threshold Decomposition of Gray-Scale Morphology into Binary Morphology , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Ching Y. Suen,et al.  A fast parallel algorithm for thinning digital patterns , 1984, CACM.

[18]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .