Optimal array signal processing in unknown noise environments via parametric approaches

In this paper, under the assumption that noise correlation is spatially limited, using two separated arrays, we propose a new parametric approach for consistent directions of arrival (DOA) estimations in unknown noise environments. The theoretical performance analysis of the proposed DOA estimations is also presented. With the use of the theoretical performance, the best weighting matrices of the parametric criteria have been derived. More significantly, it has been shown that within the best weighted criteria, using canonical decomposition, we can achieve optimal performance of the DOA estimation among a large set of eigendecompositions.