Zero Dynamics in Robotic Systems

The notion of zero dynamics of a nonlinear system is used in the investigation of three classes of problems that arise in advanced robotics: control of robots in rigid contact with the environment, free motion control of manipulators with redundant degrees of freedom, and trajectory control of robot arms with flexible links. In each case, the internal dynamics present in the system when a proper output is constrained to be zero is characterized, and a physical interpretation of such dynamics is provided. Simple examples are worked out to show how this analysis supports the design of stabilizing controllers, and that existing results can be reviewed in the spirit of zero dynamics.

[1]  Alessandro De Luca Dynamic control of robots with joint elasticity , 1988, ICRA.

[2]  Alessandro De Luca,et al.  A sufficient condition for full linearization via dynamic state feedback , 1986, 1986 25th IEEE Conference on Decision and Control.

[3]  L. Meirovitch Analytical Methods in Vibrations , 1967 .

[4]  Giovanni Ulivi,et al.  Nonlinear Regulation of End-Effector Motion for a Flexible Robot Arm , 1991 .

[5]  S. Shankar Sastry,et al.  Dynamic control of redundant manipulators , 1989, J. Field Robotics.

[6]  M. Spong Modeling and Control of Elastic Joint Robots , 1987 .

[7]  Malcolm Good,et al.  Dynamic Models for Control System Design of Integrated Robot and Drive Systems , 1985 .

[8]  Alessandro De Luca,et al.  A TASK SPACE DECOUPLING APPROACH TO HYBRID CONTROL OF MANIPULATORS , 1988 .

[9]  Sahjendra N. Singh A modified algorithm for invertibility in nonlinear systems , 1981 .

[10]  K. Kreutz On manipulator control by exact linearization , 1989 .

[11]  A. Isidori,et al.  On the nonlinear equivalent of the notion of transmission zeros , 1988 .

[12]  A. Isidori Nonlinear Control Systems , 1985 .

[13]  A. De Luca,et al.  Efficient Dynamic Resolution of Robot Redundancy , 1990, 1990 American Control Conference.

[14]  R. H. Cannon,et al.  Initial Experiments on the End-Point Control of a Flexible One-Link Robot , 1984 .

[15]  A. Isidori,et al.  Asymptotic properties of nonlinear minimum phase systems , 1989 .

[16]  A. Isidori,et al.  Nonlinear feedback in robot arm control , 1984, The 23rd IEEE Conference on Decision and Control.

[17]  Dragomir N. Nenchev,et al.  Redundancy resolution through local optimization: A review , 1989, J. Field Robotics.

[18]  Eduardo Bayo,et al.  A finite-element approach to control the end-point motion of a single-link flexible robot , 1987, J. Field Robotics.

[19]  Giuseppe Oriolo,et al.  The reduced gradient method for solving redundancy in robot arms , 1990, Robotersysteme.

[20]  Antonio Tornambè,et al.  Dynamic modelling of flexible robot manipulators , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[21]  Giovanni Ulivi,et al.  Inversion techniques for trajectory control of flexible robot arms , 1989, J. Field Robotics.

[22]  N. H. McClamroch,et al.  Feedback stabilization and tracking of constrained robots , 1988 .

[23]  T. Shamir,et al.  Repeatability of redundant manipulators: mathematical solution of the problem , 1988 .

[24]  J. W. Humberston Classical mechanics , 1980, Nature.

[25]  A. Isidori,et al.  Output regulation of nonlinear systems , 1990 .

[26]  Jean-Jacques E. Slotine,et al.  Robot analysis and control , 1988, Autom..

[27]  A. Isidori,et al.  Local stabilization of minimum-phase nonlinear systems , 1988 .

[28]  Alessandro De Luca,et al.  Task space decoupling approach to hybrid control of manipulators , 1989 .