A Polite Non-Disjoint Combination Method: Theories with Bridging Functions Revisited

The Nelson-Oppen combination method is ubiquitous in Satisfiability Modulo Theories solvers. However, one of its major drawbacks is to be restricted to disjoint unions of theories. We investigate the problem of extending this combination method to particular non-disjoint unions of theories connected via bridging functions. The motivation is, e.g., to solve verification problems expressed in a combination of data structures connected to arithmetic with bridging functions such as the length of lists and the size of trees. We present a sound and complete combination procedure a la Nelson-Oppen for the theory of absolutely free data structures, including lists and trees. This combination procedure is then refined for standard interpretations. The resulting theory has a nice politeness property, enabling combinations with arbitrary decidable theories of elements.

[1]  Greg Nelson,et al.  Simplification by Cooperating Decision Procedures , 1979, TOPL.

[2]  Calogero G. Zarba,et al.  Combining Sets with Cardinals , 2005, Journal of Automated Reasoning.

[3]  P. Chocron,et al.  A study of the Combination Problem : dealing with multiple theories in SMT solving , 2014 .

[4]  Calogero G. Zarba Combining Multisets with Integers , 2002, CADE.

[5]  Viktor Kuncak,et al.  Satisfiability Modulo Recursive Programs , 2011, SAS.

[6]  Calogero G. Zarba,et al.  Combining Lists with Non-stably Infinite Theories , 2005, LPAR.

[7]  Christophe Ringeissen,et al.  Satisfiability Modulo Non-Disjoint Combinations of Theories Connected via Bridging Functions , 2014 .

[8]  David Walker,et al.  Types and full abstraction for polyadic pi-calculus , 2005, Inf. Comput..

[9]  Calogero G. Zarba,et al.  Combining Data Structures with Nonstably Infinite Theories Using Many-Sorted Logic , 2005, FroCoS.

[10]  Christophe Ringeissen,et al.  A Gentle Non-disjoint Combination of Satisfiability Procedures , 2014, IJCAR.

[11]  Cesare Tinelli,et al.  A New Correctness Proof of the {Nelson-Oppen} Combination Procedure , 1996, FroCoS.

[12]  Michaël Rusinowitch,et al.  Combinable Extensions of Abelian Groups , 2009, CADE.

[13]  Michaël Rusinowitch,et al.  Combining Satisfiability Procedures for Unions of Theories with a Shared Counting Operator , 2010, Fundam. Informaticae.

[14]  Maria Paola Bonacina,et al.  New results on rewrite-based satisfiability procedures , 2006, TOCL.

[15]  Robert E. Shostak,et al.  A Practical Decision Procedure for Arithmetic with Function Symbols , 1979, JACM.

[16]  Viktor Kuncak,et al.  Decision procedures for algebraic data types with abstractions , 2010, POPL '10.

[17]  Hélène Kirchner,et al.  Combination of convex theories: Modularity, deduction completeness, and explanation , 2010, J. Symb. Comput..

[18]  Henny B. Sipma,et al.  Decision procedures for term algebras with integer constraints , 2006, Inf. Comput..

[19]  Viktor Kuncak,et al.  Sets with Cardinality Constraints in Satisfiability Modulo Theories , 2011, VMCAI.

[20]  Silvio Ghilardi,et al.  Model-Theoretic Methods in Combined Constraint Satisfiability , 2004, Journal of Automated Reasoning.

[21]  Ruzica Piskac,et al.  Combining Theories with Shared Set Operations , 2009, FroCoS.

[22]  Franz Baader,et al.  Connecting many-sorted theories , 2005, Journal of Symbolic Logic.

[23]  Michael W. Whalen,et al.  An Improved Unrolling-Based Decision Procedure for Algebraic Data Types , 2013, VSTTE.

[24]  Calogero G. ZarbaStanford Combining Lists with Integers ? , 2001 .

[25]  Cesare Tinelli,et al.  Unions of non-disjoint theories and combinations of satisfiability procedures , 2003, Theor. Comput. Sci..

[26]  Christoph Weidenbach,et al.  Superposition Decides the First-Order Logic Fragment Over Ground Theories , 2012, Mathematics in Computer Science.

[27]  Ralf Treinen A New Method for Undecidablity Proofs of First Order Theories , 1992, J. Symb. Comput..

[28]  Clark W. Barrett,et al.  Polite Theories Revisited , 2010, LPAR.

[29]  Viorica Sofronie-Stokkermans,et al.  Locality Results for Certain Extensions of Theories with Bridging Functions , 2009, CADE.

[30]  Peter Baumgartner,et al.  Hierarchic Superposition with Weak Abstraction , 2013, CADE.