Generalized stationary points and an interior-point method for mathematical programs with equilibrium constraints

Abstract.Generalized stationary points of the mathematical program with equilibrium constraints (MPEC) are studied to better describe the limit points produced by interior point methods for MPEC. A primal-dual interior-point method is then proposed, which solves a sequence of relaxed barrier problems derived from MPEC. Global convergence results are deduced under fairly general conditions other than strict complementarity or the linear independence constraint qualification for MPEC (MPEC-LICQ). It is shown that every limit point of the generated sequence is a strong stationary point of MPEC if the penalty parameter of the merit function is bounded. Otherwise, a point with certain stationarity can be obtained. Preliminary numerical results are reported, which include a case analyzed by Leyffer for which the penalty interior-point algorithm failed to find a stationary point.

[1]  Charles E. Blair,et al.  Computational Difficulties of Bilevel Linear Programming , 1990, Oper. Res..

[2]  Hande Y. Benson,et al.  INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR PROGRAMMING: COMPLEMENTARITY CONSTRAINTS , 2002 .

[3]  Jong-Shi Pang,et al.  A mathematical programming with equilibrium constraints approach to the implied volatility surface of American options , 2000 .

[4]  S. Dirkse,et al.  Frontiers in Applied General Equilibrium Modeling: Mathematical Programs with Equilibrium Constraints: Automatic Reformulation and Solution via Constrained Optimization , 2002 .

[5]  Masao Fukushima,et al.  An Implementable Active-Set Algorithm for Computing a B-Stationary Point of a Mathematical Program with Linear Complementarity Constraints , 2002, SIAM J. Optim..

[6]  T. Cullen Global , 1981 .

[7]  M. Friedlander,et al.  An interior-point method for mpecs based on strictly feasible relaxations , 2004 .

[8]  Jirí V. Outrata,et al.  A numerical approach to optimization problems with variational inequality constraints , 1995, Math. Program..

[9]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[10]  Lorenz T. Biegler,et al.  An Interior Point Method for Mathematical Programs with Complementarity Constraints (MPCCs) , 2005, SIAM J. Optim..

[11]  Michel Théra,et al.  Ill-posed Variational Problems and Regularization Techniques , 1999 .

[12]  Ya-Xiang Yuan,et al.  A Robust Algorithm for Optimization with General Equality and Inequality Constraints , 2000, SIAM J. Sci. Comput..

[13]  Masao Fukushima,et al.  Some Feasibility Issues in Mathematical Programs with Equilibrium Constraints , 1998, SIAM J. Optim..

[14]  Masao Fukushima,et al.  Complementarity Constraint Qualifications and Simplified B-Stationarity Conditions for Mathematical Programs with Equilibrium Constraints , 1999, Comput. Optim. Appl..

[15]  Stefan Scholtes,et al.  Convergence Properties of a Regularization Scheme for Mathematical Programs with Complementarity Constraints , 2000, SIAM J. Optim..

[16]  J. Pang,et al.  Convergence of a Smoothing Continuation Method for Mathematical Progams with Complementarity Constraints , 1999 .

[17]  A. Westerberg,et al.  A note on the optimality conditions for the bilevel programming problem , 1988 .

[18]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[19]  Jorge Nocedal,et al.  Interior Methods for Mathematical Programs with Complementarity Constraints , 2006, SIAM J. Optim..

[20]  Stefan Scholtes,et al.  How Stringent Is the Linear Independence Assumption for Mathematical Programs with Complementarity Constraints? , 2001, Math. Oper. Res..

[21]  Michael L. Overton,et al.  A Primal-dual Interior Method for Nonconvex Nonlinear Programming , 1998 .

[22]  Sven Leyffer The penalty interior-point method fails to converge , 2005, Optim. Methods Softw..

[23]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[24]  M. Florian,et al.  THE NONLINEAR BILEVEL PROGRAMMING PROBLEM: FORMULATIONS, REGULARITY AND OPTIMALITY CONDITIONS , 1993 .

[25]  Sven Leyffer,et al.  Local Convergence of SQP Methods for Mathematical Programs with Equilibrium Constraints , 2006, SIAM J. Optim..

[26]  Steven P. Dirkse,et al.  Mathematical Programs with Equilibrium Constraints : Automatic Reformulation and Solution via Constrained Optimization ∗ , 2002 .

[27]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[28]  Jiming Liu,et al.  On bilevel programming, Part I: General nonlinear cases , 1995, Math. Program..

[29]  Nicholas I. M. Gould,et al.  Superlinear Convergence of Primal-Dual Interior Point Algorithms for Nonlinear Programming , 2000, SIAM J. Optim..

[30]  Daniel Ralph,et al.  Smooth SQP Methods for Mathematical Programs with Nonlinear Complementarity Constraints , 1999, SIAM J. Optim..

[31]  Francisco Facchinei,et al.  A smoothing method for mathematical programs with equilibrium constraints , 1999, Math. Program..

[32]  J. Pang,et al.  Existence of optimal solutions to mathematical programs with equilibrium constraints , 1988 .

[33]  Patrice Marcotte,et al.  Network design problem with congestion effects: A case of bilevel programming , 1983, Math. Program..

[34]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[35]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[36]  Masao Fukushima,et al.  A Globally Convergent Sequential Quadratic Programming Algorithm for Mathematical Programs with Linear Complementarity Constraints , 1998, Comput. Optim. Appl..

[37]  Jirí V. Outrata,et al.  On Optimization Problems with Variational Inequality Constraints , 1994, SIAM J. Optim..

[38]  Jonathan F. BARD,et al.  Convex two-level optimization , 1988, Math. Program..

[39]  S. Scholtes,et al.  Exact Penalization of Mathematical Programs with Equilibrium Constraints , 1999 .

[40]  Robert J. Vanderbei,et al.  Interior-Point Algorithms, Penalty Methods and Equilibrium Problems , 2006, Comput. Optim. Appl..

[41]  Eitaro Aiyoshi,et al.  HIERARCHICAL DECENTRALIZED SYSTEM AND ITS NEW SOLUTION BY A BARRIER METHOD. , 1980 .

[42]  Jie Sun,et al.  A Robust Primal-Dual Interior-Point Algorithm for Nonlinear Programs , 2004, SIAM J. Optim..

[43]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..