Learning with structured data: applications to computer vision

In this thesis we address structured machine learning problems. Here “structured” refers to situations in which the input or output domain of a prediction function is non-vectorial. Instead, the input instance or the predicted value can be decomposed into parts that follow certain dependencies, relations and constraints. Throughout the thesis we will use hard computer vision tasks as a rich source of structured machine learning problems. In the first part of the thesis we consider structure in the input domain. We develop a general framework based on the notion of substructures. The framework is broadly applicable and we show how to cast two computer vision problems — class-level object recognition and human action recognition — in terms of classifying structured input data. For the class-level object recognition problem we model images as labeled graphs that encode local appearance statistics at vertices and pairwise geometric relations at edges. Recognizing an object can then be posed within our substructure framework as finding discriminative matching subgraphs. For the recognition of human actions we apply a similar principle in that we model a video as a sequence of local motion information. Recognizing an action then becomes recognizing a matching subsequence within the larger video sequence. For both applications, our framework enables us to finding the discriminative substructures from training data. This first part contains as a main contribution a set of abstract algorithms for our framework to enable the construction of powerful classifiers for a large family of structured input domains. The second part of the thesis addresses structure in the output domain of a prediction function. Specifically we consider image segmentation problems in which the produced segmentation must satisfy global properties such as connectivity. We develop a principled method to incorporate global interactions into computer vision random field models by means of linear programming relaxations. To further understand solutions produced by general linear programming relaxations we develop a tractable and novel concept of solution stability, where stability is quantified with respect to perturbations of the input data. This second part of the thesis makes progress in modeling, solving and understanding solution properties of hard structured prediction problems arising in computer vision. In particular, we show how previously intractable models integrating global constraints with local evidence can be well approximated. We further show how these solutions can be understood in light of their stability properties.

[1]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[2]  Egon Balas,et al.  Projection, Lifting and Extended Formulation in Integer and Combinatorial Optimization , 2005, Ann. Oper. Res..

[3]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[4]  Yang Song,et al.  Unsupervised Learning of Human Motion , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Antonio Criminisi,et al.  TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context , 2007, International Journal of Computer Vision.

[7]  Tom Minka,et al.  Principled Hybrids of Generative and Discriminative Models , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[8]  Martial Hebert,et al.  Efficient visual event detection using volumetric features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[9]  Nikos Komodakis,et al.  MRF Optimization via Dual Decomposition: Message-Passing Revisited , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[10]  Yair Weiss,et al.  Linear Programming Relaxations and Belief Propagation - An Empirical Study , 2006, J. Mach. Learn. Res..

[11]  Sebastian Nowozin,et al.  Frequent Subgraph Retrieval in Geometric Graph Databases , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[12]  Martine Labbé,et al.  Size-constrained graph partitioning polytopes , 2010, Discret. Math..

[13]  S. Kotz,et al.  Multivariate θ-generalized normal distributions , 1973 .

[14]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Pietro Perona,et al.  Unsupervised Learning of Models for Recognition , 2000, ECCV.

[16]  Robert E. Schapire,et al.  The strength of weak learnability , 1990, Mach. Learn..

[17]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[18]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[19]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[20]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[21]  Yuji Matsumoto,et al.  An Application of Boosting to Graph Classification , 2004, NIPS.

[22]  Jianyong Wang,et al.  Mining sequential patterns by pattern-growth: the PrefixSpan approach , 2004, IEEE Transactions on Knowledge and Data Engineering.

[23]  Arthur M. Geoffrion,et al.  Elements of Large Scale Mathematical Programming Part II: Synthesis of Algorithms and Bibliography , 1970 .

[24]  Sebastian Nowozin,et al.  Discriminative Subsequence Mining for Action Classification , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[25]  Tomás Werner,et al.  A Linear Programming Approach to Max-Sum Problem: A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  F. Comets On Consistency of a Class of Estimators for Exponential Families of Markov Random Fields on the Lattice , 1992 .

[27]  W. Freeman,et al.  Generalized Belief Propagation , 2000, NIPS.

[28]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[29]  Sebastian Nowozin,et al.  gBoost: a mathematical programming approach to graph classification and regression , 2009, Machine Learning.

[30]  Daniel Cremers,et al.  Efficient planar graph cuts with applications in Computer Vision , 2009, CVPR.

[31]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Takeo Kanade,et al.  Probabilistic modeling of local appearance and spatial relationships for object recognition , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[33]  Andrew McCallum,et al.  Piecewise pseudolikelihood for efficient training of conditional random fields , 2007, ICML '07.

[34]  Yiannis Aloimonos,et al.  Who killed the directed model? , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Gunnar Rätsch,et al.  Sparse Regression Ensembles in Infinite and Finite Hypothesis Spaces , 2002, Machine Learning.

[36]  Chunhua Shen,et al.  A Duality View of Boosting Algorithms , 2009, ArXiv.

[37]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[38]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[39]  Andrew McCallum,et al.  Piecewise Training for Undirected Models , 2005, UAI.

[40]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[41]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[42]  Abraham P. Punnen,et al.  A survey of very large-scale neighborhood search techniques , 2002, Discret. Appl. Math..

[43]  Trevor Darrell,et al.  Conditional Random Fields for Object Recognition , 2004, NIPS.

[44]  David A. Forsyth,et al.  Automatic Annotation of Everyday Movements , 2003, NIPS.

[45]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[46]  T. C. Hu,et al.  Multi-Terminal Network Flows , 1961 .

[47]  B. Gidas Consistency of Maximum Likelihood and Pseudo-Likelihood Estimators for Gibbs Distributions , 1988 .

[48]  Y. Freund,et al.  Discussion of the Paper \additive Logistic Regression: a Statistical View of Boosting" By , 2000 .

[49]  Andrew McCallum,et al.  An Introduction to Conditional Random Fields for Relational Learning , 2007 .

[50]  Hiroki Arimura,et al.  LCM ver. 2: Efficient Mining Algorithms for Frequent/Closed/Maximal Itemsets , 2004, FIMI.

[51]  Bill Triggs,et al.  Scene Segmentation with CRFs Learned from Partially Labeled Images , 2007, NIPS.

[52]  Lihi Zelnik-Manor,et al.  Event-based analysis of video , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[53]  Joachim M. Buhmann,et al.  Spanning Tree Approximations for Conditional Random Fields , 2009, AISTATS.

[54]  Ayhan Demiriz,et al.  Linear Programming Boosting via Column Generation , 2002, Machine Learning.

[55]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[56]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[57]  Gerhard Winkler,et al.  Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.

[58]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Thorsten Joachims,et al.  Learning to classify text using support vector machines - methods, theory and algorithms , 2002, The Kluwer international series in engineering and computer science.

[60]  Christoph H. Lampert,et al.  Efficient Subwindow Search: A Branch and Bound Framework for Object Localization , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[62]  Derek Hoiem,et al.  Learning CRFs Using Graph Cuts , 2008, ECCV.

[63]  David A. McAllester,et al.  A discriminatively trained, multiscale, deformable part model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[64]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[65]  Martin W. P. Savelsbergh,et al.  Approximating the stability region for binary mixed-integer programs , 2009, Oper. Res. Lett..

[66]  Benno Schwikowski,et al.  Discovering regulatory and signalling circuits in molecular interaction networks , 2002, ISMB.

[67]  Daniel P. Huttenlocher,et al.  Learning for stereo vision using the structured support vector machine , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[68]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[69]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[70]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[71]  Daniel Freedman,et al.  Energy minimization via graph cuts: settling what is possible , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[72]  Pushmeet Kohli,et al.  Exact inference in multi-label CRFs with higher order cliques , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[73]  Peter L. Bartlett,et al.  Boosting Algorithms as Gradient Descent , 1999, NIPS.

[74]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[75]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[76]  Derek Hoiem,et al.  3D LayoutCRF for Multi-View Object Class Recognition and Segmentation , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[77]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[78]  Vladimir Kolmogorov,et al.  Graph cut based image segmentation with connectivity priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[79]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[80]  Vladimir Kolmogorov,et al.  An Analysis of Convex Relaxations for MAP Estimation , 2007, NIPS.

[81]  J. Besag Efficiency of pseudolikelihood estimation for simple Gaussian fields , 1977 .

[82]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[83]  Thorsten Joachims,et al.  Training structural SVMs when exact inference is intractable , 2008, ICML '08.

[84]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[85]  Jianbo Shi,et al.  Multiclass spectral clustering , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[86]  Tommi S. Jaakkola,et al.  Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations , 2007, NIPS.

[87]  Christoph H. Lampert,et al.  Learning to Localize Objects with Structured Output Regression , 2008, ECCV.

[88]  Leo Breiman,et al.  Prediction Games and Arcing Algorithms , 1999, Neural Computation.

[89]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[90]  Philip H. S. Torr,et al.  Efficiently solving convex relaxations for MAP estimation , 2008, ICML '08.

[91]  Robert Sedgewick,et al.  Algorithms in C : Part 5 : Graph Algo-rithms , 2002 .

[92]  Vladimir Kolmogorov,et al.  Minimizing Nonsubmodular Functions with Graph Cuts-A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[93]  Ankur Agarwal,et al.  Learning to track 3D human motion from silhouettes , 2004, ICML.

[94]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[95]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[96]  Thomas Gärtner,et al.  A survey of kernels for structured data , 2003, SKDD.

[97]  Daniel P. Huttenlocher,et al.  Spatial priors for part-based recognition using statistical models , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[98]  Peter A. Flach,et al.  Propositionalization approaches to relational data mining , 2001 .

[99]  Max Welling,et al.  Learning in Markov Random Fields An Empirical Study , 2005 .

[100]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[101]  Dan Roth,et al.  Learning to detect objects in images via a sparse, part-based representation , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[102]  Nils J. Nilsson,et al.  Artificial Intelligence: A New Synthesis , 1997 .

[103]  Pietro Perona,et al.  A Probabilistic Approach to Object Recognition Using Local Photometry and Global Geometry , 1998, ECCV.

[104]  Tommi S. Jaakkola,et al.  New Outer Bounds on the Marginal Polytope , 2007, NIPS.

[105]  Pietro Perona,et al.  A Bayesian approach to unsupervised one-shot learning of object categories , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[106]  Brendan J. Frey,et al.  A Revolution: Belief Propagation in Graphs with Cycles , 1997, NIPS.

[107]  H. Fang,et al.  Comparative molecular field analysis (CoMFA) model using a large diverse set of natural, synthetic and environmental chemicals for binding to the androgen receptor , 2003, SAR and QSAR in environmental research.

[108]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[109]  Nicol N. Schraudolph,et al.  Efficient Exact Inference in Planar Ising Models , 2008, NIPS.

[110]  Tommi S. Jaakkola,et al.  Tightening LP Relaxations for MAP using Message Passing , 2008, UAI.

[111]  Chung-Kuan Cheng,et al.  Ancestor tree for arbitrary multi-terminal cut functions , 1990, IPCO.

[112]  T. Minka Discriminative models, not discriminative training , 2005 .

[113]  B. Jansen,et al.  Sensitivity analysis in linear programming: just be careful! , 1997 .

[114]  Ulrik Brandes,et al.  On Modularity Clustering , 2008, IEEE Transactions on Knowledge and Data Engineering.

[115]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[116]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[117]  Pushmeet Kohli,et al.  Reduce, reuse & recycle: Efficiently solving multi-label MRFs , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[118]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[119]  Ivan Laptev,et al.  On Space-Time Interest Points , 2005, International Journal of Computer Vision.

[120]  Nello Cristianini,et al.  Large Margin DAGs for Multiclass Classification , 1999, NIPS.

[121]  Amos Fiat,et al.  Correlation Clustering - Minimizing Disagreements on Arbitrary Weighted Graphs , 2003, ESA.

[122]  Juan Carlos Niebles,et al.  Unsupervised Learning of Human Action Categories , 2006 .

[123]  Nikos Komodakis,et al.  Fast, Approximately Optimal Solutions for Single and Dynamic MRFs , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[124]  Kiyoshi Asai,et al.  Marginalized kernels for biological sequences , 2002, ISMB.

[125]  Mubarak Shah,et al.  Actions sketch: a novel action representation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[126]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[127]  M. R. Rao,et al.  The partition problem , 1993, Math. Program..

[128]  Miguel Á. Carreira-Perpiñán,et al.  On Contrastive Divergence Learning , 2005, AISTATS.

[129]  David Mease,et al.  Evidence Contrary to the Statistical View of Boosting , 2008, J. Mach. Learn. Res..

[130]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[131]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[132]  Tomás Werner,et al.  High-arity interactions, polyhedral relaxations, and cutting plane algorithm for soft constraint optimisation (MAP-MRF) , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[133]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[134]  Rémi Ronfard,et al.  Free viewpoint action recognition using motion history volumes , 2006, Comput. Vis. Image Underst..

[135]  Matthias Bethge,et al.  Characterization of the p-generalized normal distribution , 2009, J. Multivar. Anal..

[136]  Gunnar Rätsch,et al.  An Introduction to Boosting and Leveraging , 2002, Machine Learning Summer School.

[137]  Martin Grötschel,et al.  Clique-Web Facets for Multicut Polytopes , 1992, Math. Oper. Res..

[138]  Thorsten Joachims,et al.  Supervised clustering with support vector machines , 2005, ICML.

[139]  Nikos Komodakis,et al.  Beyond Loose LP-Relaxations: Optimizing MRFs by Repairing Cycles , 2008, ECCV.

[140]  Gunnar Rätsch,et al.  Constructing Boosting Algorithms from SVMs: An Application to One-Class Classification , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[141]  Aapo Hyvärinen,et al.  Consistency of Pseudolikelihood Estimation of Fully Visible Boltzmann Machines , 2006, Neural Computation.

[142]  Michael Collins,et al.  Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms , 2002, EMNLP.

[143]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[144]  Michael J. Black,et al.  Parameterized Modeling and Recognition of Activities , 1999, Comput. Vis. Image Underst..

[145]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[146]  Jan Ramon,et al.  Expressivity versus efficiency of graph kernels , 2003 .

[147]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[148]  Yali Amit,et al.  Sequential Learning of Reusable Parts for Object Detection , 2003 .

[149]  Jamie Shotton,et al.  The Layout Consistent Random Field for Recognizing and Segmenting Partially Occluded Objects , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[150]  Vladimir Kolmogorov,et al.  On partial optimality in multi-label MRFs , 2008, ICML '08.

[151]  Mark W. Schmidt,et al.  Accelerated training of conditional random fields with stochastic gradient methods , 2006, ICML.

[152]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[153]  Hisashi Kashima,et al.  Marginalized Kernels Between Labeled Graphs , 2003, ICML.

[154]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[155]  Martin Grötschel,et al.  Facets of the clique partitioning polytope , 1990, Math. Program..

[156]  Shinichi Morishita Computing Optimal Hypotheses Efficiently for Boosting , 2002, Progress in Discovery Science.

[157]  G. Nemhauser,et al.  Integer Programming , 2020 .

[158]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[159]  S.,et al.  An Efficient Heuristic Procedure for Partitioning Graphs , 2022 .

[160]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[161]  Justin Domke Crossover Random Fields , 2008 .

[162]  Amos Fiat,et al.  Correlation clustering in general weighted graphs , 2006, Theor. Comput. Sci..

[163]  Fu Jie Huang,et al.  A Tutorial on Energy-Based Learning , 2006 .

[164]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[165]  Christoph H. Lampert,et al.  Beyond sliding windows: Object localization by efficient subwindow search , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[166]  R. Zemel,et al.  Multiscale conditional random fields for image labeling , 2004, CVPR 2004.

[167]  Martin J. Wainwright,et al.  A new class of upper bounds on the log partition function , 2002, IEEE Transactions on Information Theory.

[168]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[169]  Yoshiko Wakabayashi,et al.  A cutting plane algorithm for a clustering problem , 1989, Math. Program..

[170]  I. Warnesson,et al.  Optimization of semantic relations by data aggregation techniques , 1985 .

[171]  Jitendra Malik,et al.  Recognizing action at a distance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[172]  Daniel P. Huttenlocher,et al.  Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.

[173]  Arthur M. Geoffrion,et al.  Elements of Large-Scale Mathematical Programming Part I: Concepts , 1970 .

[174]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[175]  Cordelia Schmid,et al.  A maximum entropy framework for part-based texture and object recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[176]  Serge J. Belongie,et al.  Behavior recognition via sparse spatio-temporal features , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[177]  Greg Mori,et al.  Guiding model search using segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[178]  Léon Bottou,et al.  The Tradeoffs of Large Scale Learning , 2007, NIPS.