Hydrated electron revisited via the feynman path integral route

[1]  B. Berne,et al.  Path integral methods for simulating electronic spectra , 1985 .

[2]  D. Chandler,et al.  Excess electrons in simple fluids. II. Numerical results for the hard sphere solvent , 1984 .

[3]  M. Zaider,et al.  The application of track calculations to radiobiology. III. Analysis of the molecular beam experiment results. , 1984, Radiation research.

[4]  N. Kestner,et al.  Studies of the stability of negatively charged water clusters , 1984 .

[5]  M. Klein,et al.  Computer simulation of muonium in water , 1984 .

[6]  M. Parrinello,et al.  Study of an F center in molten KCl , 1984 .

[7]  R. A. Kuharski,et al.  Quantum mechanical contributions to the structure of liquid water , 1984 .

[8]  S. Tagawa,et al.  Initial distribution function of the electron and the positive hole in liquid cyclohexane determined by the geminate recombination data and the smoluchowski equation , 1984 .

[9]  James E. Turner,et al.  Physical and Chemical Development of Electron Tracks in Liquid Water , 1983 .

[10]  G. Kenney-Wallace,et al.  Picosecond spectroscopy and solvation clusters. The dynamics of localizing electrons in polar fluids , 1982 .

[11]  B. Berne,et al.  On path integral Monte Carlo simulations , 1982 .

[12]  L. Kevan,et al.  Solvated electron structure in glassy matrixes , 1981 .

[13]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[14]  L. Kevan,et al.  Electron spin echo modulation study of the geometry of solvated electrons in ethanol glass: An example of a molecular dipole oriented solvation shell , 1980 .

[15]  L. Kevan,et al.  Theoretical models for solvated electrons , 1980 .

[16]  J. Warman,et al.  Geminate ion decay kinetics in nanosecond pulse irradiated cyclohexane solutions studied by optical and microwave absorption , 1980 .

[17]  L. Kevan Forbidden matrix proton spin flip satelites in 70 GHz ESP spectra of solvated electrons. A geometrical model for the solvated electron in Methanol glass , 1979 .

[18]  John H. Miller,et al.  Nonhomogenous Chemical Kinetics in Pulsed Proton Radioluminescence , 1978 .

[19]  J. Jortner,et al.  Effects of phase density on ionization processes and electron localization in fluids , 1977 .

[20]  P. Narayana,et al.  ESR line shape studies of trapped electrons in γ‐irradiated 17O enriched 10M NaOH alkaline ice glass: Model for the geometrical structure of the trapped electron , 1976 .

[21]  M. Newton Role of ab initio calculations in elucidating properties of hydrated and ammoniated electrons , 1975 .

[22]  P. Narayana,et al.  Electron spin echo envelope modulation of trapped radicals in disordered glassy systems: Application to the molecular structure around excess electrons in γ-irradiated 10M sodium hydroxide alkaline ice glass , 1975 .

[23]  J. Jortner,et al.  Dynamics of solvation of an excess electron , 1973 .

[24]  E. Hart,et al.  Yields and decay of the hydrated electron at times greater than 200 picoseconds , 1973 .

[25]  L. Kevan,et al.  Semicontinuum model for trapped electrons in polar liquids and solids. Trends with matrix polarity. , 1973 .

[26]  J. Boag,et al.  Absorption Spectra in Irradiated Water and Some Solutions: Absorption Spectra of ‘Hydrated’ Electron , 1963, Nature.