Navier-stokes, fluid dynamics, and image and video inpainting

Image inpainting involves filling in part of an image or video using information from the surrounding area. Applications include the restoration of damaged photographs and movies and the removal of selected objects. We introduce a class of automated methods for digital inpainting. The approach uses ideas from classical fluid dynamics to propagate isophote lines continuously from the exterior into the region to be inpainted. The main idea is to think of the image intensity as a 'stream function for a two-dimensional incompressible flow. The Laplacian of the image intensity plays the role of the vorticity of the fluid; it is transported into the region to be inpainted by a vector field defined by the stream function. The resulting algorithm is designed to continue isophotes while matching gradient vectors at the boundary of the inpainting region. The method is directly based on the Navier-Stokes equations for fluid dynamics, which has the immediate advantage of well-developed theoretical and numerical results. This is a new approach for introducing ideas from computational fluid dynamics into problems in computer vision and image analysis.

[1]  Jérôme Monteil,et al.  A New Interpretation and improvement of the Nonlinear Anisotropic Diffusion for Image Enhancement , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  G. L. Browning,et al.  Comparison of numerical methods for the calculation of two-dimensional turbulence , 1989 .

[3]  Alexei A. Efros,et al.  Texture synthesis by non-parametric sampling , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  KELVIN On the Doctrine of Discontinuity of Fluid Motion, in Connection with the Resistance against a Solid Moving through a Fluid , 1894, Nature.

[6]  Takashi Totsuka,et al.  Combining frequency and spatial domain information for fast interactive image noise removal , 1996, SIGGRAPH.

[7]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[8]  J. Morel,et al.  An axiomatic approach to image interpolation. , 1998, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[9]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[10]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[11]  W. Wolibner Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long , 1933 .

[12]  Hantaek Bae Navier-Stokes equations , 1992 .

[13]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[14]  James R. Bergen,et al.  Pyramid-based texture analysis/synthesis , 1995, Proceedings., International Conference on Image Processing.

[15]  Michael Renardy,et al.  Mathematical Analysis of Viscoelastic Flows , 1987 .

[16]  Vision Research , 1961, Nature.

[17]  Olivier Buisson,et al.  Detection and removal of line scratches in motion picture films , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[18]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[19]  John E. Howland,et al.  Computer graphics , 1990, IEEE Potentials.

[20]  A. Majda,et al.  Concentrations in regularizations for 2-D incompressible flow , 1987 .

[21]  Guillermo Sapiro,et al.  Filling-in by joint interpolation of vector fields and gray levels , 2001, IEEE Trans. Image Process..

[22]  A. Oberbeck,et al.  Ueber discontinuirliche Flüssigkeitsbewegungen , 1877 .

[23]  M. V. Dyke,et al.  An Album of Fluid Motion , 1982 .

[24]  Gilberte Émile-Mâle The restorer's handbook of easel painting , 1976 .

[25]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[26]  R. Shapley,et al.  Spatial and Temporal Properties of Illusory Contours and Amodal Boundary Completion , 1996, Vision Research.

[27]  Simon Masnou Filtrage et désocclusion d'images par méthodes d'ensembles de niveau , 1998 .

[28]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[29]  D. Elsworth Computational Methods in Fluid Flow , 1993 .

[30]  B. M. Fulk MATH , 1992 .

[31]  by Arch. Rat. Mech. Anal. , 2022 .

[32]  Anil C. Kokaram,et al.  Detection of missing data in image sequences , 1995, IEEE Trans. Image Process..

[33]  David Mumford,et al.  Filtering, Segmentation and Depth , 1993, Lecture Notes in Computer Science.

[34]  Anil C. Kokaram,et al.  Interpolation of missing data in image sequences , 1995, IEEE Trans. Image Process..

[35]  Claude Greengard,et al.  On diperna‐majda concentration sets for two‐dimensional incompressible flow , 1988 .

[36]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[37]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[38]  Eero P. Simoncelli,et al.  Texture characterization via joint statistics of wavelet coefficient magnitudes , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[39]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[40]  Tosio Kato,et al.  On classical solutions of the two-dimensional non-stationary Euler equation , 1967 .

[41]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .