History assignment: when was the mitochondrion founded?

[1]  M. Sogin,et al.  A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[2]  D. Caron,et al.  Phylogenetic relationships between the Acantharea and the Polycystinea: a molecular perspective on Haeckel's Radiolaria. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[3]  X. Gu The age of the common ancestor of eukaryotes and prokaryotes: statistical inferences. , 1997, Molecular biology and evolution.

[4]  H. Philippe,et al.  Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae. , 1997, Molecular and biochemical parasitology.

[5]  J. Palmer,et al.  The mitochondrion that time forgot , 1997, Nature.

[6]  D. Sankoff,et al.  An ancestral mitochondrial DNA resembling a eubacterial genome in miniature , 1997, Nature.

[7]  W. Alkema,et al.  Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome , 1997, FEBS letters.

[8]  C. Vossbrinck,et al.  Phylogenetic Position of Amblyospora Hazard & Oldacre (Microspora: Amblyosporidae) Based on Small Subunit rRNA Data and Its Implication for the Evolution of the Microsporidia , 1997, The Journal of eukaryotic microbiology.

[9]  Detlef D. Leipe,et al.  16S-like rDNA sequences from Developayella elegans, Labyrinthuloides haliotidis, and Proteromonas lacertae confirm that the stramenopiles are a primarily heterotrophic group , 1996 .

[10]  M. Fěvre,et al.  scsB, a cDNA encoding the hydrogenosomal β subunit of succinyl-CoA synthetase from the anaerobic fungus Neocallimastix frontalis , 1996, Molecular and General Genetics MGG.

[11]  H. Philippe,et al.  Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[12]  W. Doolittle,et al.  A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  W. Doolittle,et al.  Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. , 1996, Molecular biology and evolution.

[14]  P. J. Johnson,et al.  A common evolutionary origin for mitochondria and hydrogenosomes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  D. G. Lloyd,et al.  Molecular data suggest an early acquisition of the mitochondrion endosymbiont , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  J D Palmer,et al.  The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[17]  F. Hartl Molecular chaperones in cellular protein folding , 1996, Nature.

[18]  M. Sogin,et al.  Human parasite finds taxonomic home , 1996, Nature.

[19]  S. Katiyar,et al.  Phylogenetic Analysis of β-Tubulin Sequences from Amitochondrial Protozoa , 1996 .

[20]  M. Gouy,et al.  Early origin of foraminifera suggested by SSU rRNA gene sequences. , 1996, Molecular biology and evolution.

[21]  M. Sogin,et al.  Ancestral relationships of the major eukaryotic lineages. , 1996, Microbiologia.

[22]  R. Doolittle,et al.  Determining Divergence Times of the Major Kingdoms of Living Organisms with a Protein Clock , 1996, Science.

[23]  M. Pagès,et al.  Evidence for the smallest nuclear genome (2.9 Mb) in the microsporidium Encephalitozoon cuniculi. , 1995, Molecular and biochemical parasitology.

[24]  A. Roger,et al.  Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Lake,et al.  Evidence from 18S ribosomal DNA that the lophophorates are protostome animals , 1995, Science.

[26]  S. Aksoy Molecular analysis of the endosymbionts of tsetse flies: 16S rDNA locus and over‐expression of a chaperonin , 1995, Insect molecular biology.

[27]  A. Knoll Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[28]  G. Prensier,et al.  On small genomes in eukaryotic organisms: molecular karyotypes of two microsporidian species (Protozoa) parasites of vertebrates. , 1994, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[29]  M. Sogin,et al.  The unusually long small subunit ribosomal RNA of Phreatamoeba balamuthi. , 1994, Nucleic acids research.

[30]  J. Palmer,et al.  Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Miklós Müller Review Article: The hydrogenosome , 1993 .

[32]  Detlef D. Leipe,et al.  Small subunit ribosomal RNA+ of Hexamita inflata and the quest for the first branch in the eukaryotic tree. , 1993, Molecular and biochemical parasitology.

[33]  S. Stickel,et al.  Monophyletic origins of the metazoa: an evolutionary link with fungi , 1993, Science.

[34]  B. Runnegar,et al.  Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. , 1992, Science.

[35]  A. Knoll,et al.  The early evolution of eukaryotes: a geological perspective. , 1992, Science.

[36]  S. Culver Early Cambrian Foraminifera from West Africa , 1991, Science.

[37]  H. Ishikawa,et al.  Molecular chaperon produced by an intracellular symbiont. , 1991, Journal of biochemistry.

[38]  M. Sogin,et al.  Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. , 1991, Molecular and biochemical parasitology.

[39]  B. Leadbeater,et al.  The Chromophyte algae : problems and perspectives , 1990 .

[40]  S. Osawa,et al.  Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Masasuke Yoshida,et al.  Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[42]  C R Woese,et al.  Mitochondrial origins. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Philip John,et al.  Paracoccus denitrificans and the evolutionary origin of the mitochondrion , 1975, Nature.

[44]  M. Hasegawa,et al.  Origin and early evolution of eukaryotes inferred from the amino acid sequences of translation elongation factors 1alpha/Tu and 2/G. , 1996, Advances in biophysics.

[45]  P. Forterre,et al.  The nature of the last universal ancestor and the root of the tree of life, still open questions. , 1992, Bio Systems.

[46]  T. Cavalier-smith The Evolution of Cells , 1991 .

[47]  K. Jeon,et al.  Elevated levels of stress proteins associated with bacterial symbiosis in Amoeba proteus and soybean root nodule cells. , 1991, Bio Systems.

[48]  大沢 省三,et al.  Evolution of life : fossils, molecules, and culture , 1991 .

[49]  T. C. Smith The kingdom Chromista. , 1989 .

[50]  L. Margulis Symbiosis in cell evolution: Life and its environment on the early earth , 1981 .