SCALE MIXTURES DISTRIBUTIONS IN STATISTICAL MODELLING

This paper presents two types of symmetric scale mixture probability distributions which include the normal, Student t, Pearson Type VII, variance gamma, exponential power, uniform power and generalized t (GT) distributions. Expressing a symmetric distribution into a scale mixture form enables efficient Bayesian Markov chain Monte Carlo (MCMC) algorithms in the implementation of complicated statistical models. Moreover, the mixing parameters, a by‐product of the scale mixture representation, can be used to identify possible outliers. This paper also proposes a uniform scale mixture representation for the GT density, and demonstrates how this density representation alleviates the computational burden of the Gibbs sampler.

[1]  J. I The Design of Experiments , 1936, Nature.

[2]  A. Dawid Posterior expectations for large observations , 1973 .

[3]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[4]  D. F. Andrews,et al.  Scale Mixtures of Normal Distributions , 1974 .

[5]  A. O'Hagan,et al.  On Outlier Rejection Phenomena in Bayes Inference , 1979 .

[6]  Richard J. Butler,et al.  Some Generalized Mixture Distributions with an Application to Unemployment Duration , 1987 .

[7]  M. West On scale mixtures of normal distributions , 1987 .

[8]  James B. McDonald,et al.  Partially Adaptive Estimation of Regression Models via the Generalized T Distribution , 1988, Econometric Theory.

[9]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[10]  Exact and Approximate Posterior Moments for a Normal Location , 1992 .

[11]  Adrian F. M. Smith,et al.  Exact and Approximate Posterior Moments for a Normal Location Parameter , 1992 .

[12]  S. T. Boris Choy,et al.  On Robust Analysis of a Normal Location Parameter , 1997 .

[13]  Zhaohui Qin,et al.  Uniform scale mixture models with applications to Bayesian inference , 2003 .

[14]  S. Walker The uniform power distribution , 1999 .

[15]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[16]  S. T. Boris Choy,et al.  Scale Mixtures Distributions in Insurance Applications , 2003, ASTIN Bulletin.

[17]  O. Arslan,et al.  Robust Location and Scale Estimation Based on the Univariate Generalized t (GT) Distribution , 2003 .

[18]  E. Seneta Fitting the variance-gamma model to financial data , 2004, Journal of Applied Probability.

[19]  S. Choy,et al.  Bayesian Student-t Stochastic Volatility Models , 2005 .