High order numerical simulation of Aeolian tones

Abstract High order finite difference methods have been constructed to be strictly stable for linear hyperbolic and parabolic problems. The difference operators have been extended from the Euler to the Navier–Stokes equations for computational aeroacoustics. Aeolian tones generated by vortex shedding from a circular cylinder have been simulated.

[1]  J. Nordström,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2004, Journal of Scientific Computing.

[2]  J. Bowles,et al.  Fourier Analysis of Numerical Approximations of Hyperbolic Equations , 1987 .

[3]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[4]  Jens Nørkær Sørensen,et al.  A collocated grid finite volume method for aeroacoustic computations of low-speed flows , 2004 .

[5]  H. C. Yee,et al.  Entropy Splitting for High Order Numerical Simulation of Vortex Sound at Low Mach Numbers , 2001, J. Sci. Comput..

[6]  H. C. Yee,et al.  High order numerical simulation of sound generated by the Kirchhoff vortex , 2001 .

[7]  R. Grundmann,et al.  Numerical Simulation of the Flow Around an Infinitely Long Circular Cylinder in the Transition Regime , 2001 .

[8]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[9]  Bernhard Müller,et al.  Towards High Order Numerical Simulation of Aeolian Tones , 2005 .

[10]  Jan Nordström,et al.  Finite Difference Approximations of Second Derivatives on Summation by Parts Form , 2003 .

[11]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[12]  W. Schröder,et al.  Acoustic perturbation equations based on flow decomposition via source filtering , 2003 .

[13]  A Novel Application of Curle's Acoustic Analogy to Aeolian Tones in Two Dimensions , 2004 .

[14]  Ken Mattsson,et al.  Boundary Procedures for Summation-by-Parts Operators , 2003, J. Sci. Comput..

[15]  Jan Nordström,et al.  Boundary and Interface Conditions for High-Order Finite-Difference Methods Applied to the Euler and Navier-Stokes Equations , 1999 .

[16]  Lord Rayleigh,et al.  XLVIII. Æolian tones , 1915 .

[17]  J. C. Hardin,et al.  Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems , 1997 .

[18]  Y. Chou,et al.  On elastic fields of twist and wedge disclamations loops in a hexagonal crystal , 1974 .

[19]  C. Bailly,et al.  Flow-induced cylinder noise formulated as a diffraction problem for low Mach numbers , 2005 .

[20]  O. M. Phillips,et al.  The intnesity of Aeolian tones , 1956, Journal of Fluid Mechanics.

[21]  Jörn Sesterhenn,et al.  Computation of compressible low Mach number flow , 1992 .

[22]  Christophe Bailly,et al.  High-order Curvilinear Simulations of Flows Around Non-Cartesian Bodies , 2004 .

[23]  Jörn Sesterhenn,et al.  On the Cancellation Problem in Calculating Compressible Low Mach Number Flows , 1999 .

[24]  Margot Gerritsen,et al.  Designing an efficient solution strategy for fluid flows. 1. A stable high order finite difference scheme and sharp shock resolution for the Euler equations , 1996 .

[25]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[26]  Stefan Johansson,et al.  High order difference approximations for the linearized Euler equations , 2004 .

[27]  Osamu Inoue,et al.  Sound generation by a two-dimensional circular cylinder in a uniform flow , 2002, Journal of Fluid Mechanics.

[28]  Stefan Johansson,et al.  Strictly stable high order difference approximations for computational aeroacoustics , 2005 .

[29]  V. Strouhal,et al.  Ueber eine besondere Art der Tonerregung , 1878 .

[30]  Bernhard Müller,et al.  High Order Difference Method for Low Mach Number Aeroacoustics , 2001 .