SARS-CoV-2 restructures host chromatin architecture

[1]  S. Berger,et al.  SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry , 2022, Nature.

[2]  C. Policarpi,et al.  Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications , 2022, bioRxiv.

[3]  Jennifer E. Phillips-Cremins,et al.  Cohesin-dependence of neuronal gene expression relates to chromatin loop length , 2022, eLife.

[4]  B. Blagoev,et al.  The glucocorticoid receptor associates with the cohesin loader NIPBL to promote long-range gene regulation , 2022, Science advances.

[5]  A. Omer,et al.  Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia , 2022, Cell.

[6]  Michael J. Bolt,et al.  Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. , 2021, Molecular cell.

[7]  Wesley R. Legant,et al.  Phase separation drives aberrant chromatin looping and cancer development , 2021, Nature.

[8]  J. Bertin,et al.  A diamidobenzimidazole STING agonist protects against SARS-CoV-2 infection , 2021, Science Immunology.

[9]  A. Takaoka,et al.  RIG-I triggers a signaling-abortive anti-SARS-CoV-2 defense in human lung cells , 2021, Nature Immunology.

[10]  M. Raftery,et al.  SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself , 2021, Nature Communications.

[11]  S. Chanda,et al.  TOP1 inhibition therapy protects against SARS-CoV-2-induced lethal inflammation , 2021, Cell.

[12]  J. Peters,et al.  Genome folding through loop extrusion by SMC complexes , 2021, Nature Reviews Molecular Cell Biology.

[13]  D. Brodie,et al.  Post-acute COVID-19 syndrome , 2021, Nature Medicine.

[14]  A. Iwasaki,et al.  The first 12 months of COVID-19: a timeline of immunological insights , 2021, Nature reviews. Immunology.

[15]  Z. Weng,et al.  Liquid chromatin Hi-C characterizes compartment-dependent chromatin interaction dynamics , 2021, Nature Genetics.

[16]  L. Mirny,et al.  Systematic evaluation of chromosome conformation capture assays , 2020, Nature Methods.

[17]  B. Bruneau,et al.  WAPL maintains a cohesin loading cycle to preserve cell-type specific distal gene regulation , 2020, Nature genetics.

[18]  Ken-ichiro Hayashi,et al.  The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice , 2020, Nature Communications.

[19]  Bryan J. Venters,et al.  Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture , 2020, Nature.

[20]  M. Netea,et al.  Trained Innate Immunity, Epigenetics, and Covid-19. , 2020, The New England journal of medicine.

[21]  Xiaowei Zhuang,et al.  Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin , 2020, Cell.

[22]  M. Weirauch,et al.  Human Virus Transcriptional Regulators , 2020, Cell.

[23]  B. Cullen,et al.  Epigenetic and epitranscriptomic regulation of viral replication , 2020, Nature Reviews Microbiology.

[24]  R. Schwartz,et al.  Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19 , 2020, Cell.

[25]  J. Dekker,et al.  Mechanisms and Functions of Chromosome Compartmentalization. , 2020, Trends in biochemical sciences.

[26]  Benjamin J. Polacco,et al.  A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing , 2020, Nature.

[27]  A. M. Leontovich,et al.  The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 , 2020, Nature Microbiology.

[28]  A. Pombo,et al.  Methods for mapping 3D chromosome architecture , 2019, Nature Reviews Genetics.

[29]  Thomas G. Gilgenast,et al.  Chromatin Structure Dynamics During the Mitosis to G1-Phase Transition , 2019, Nature.

[30]  Neva C. Durand,et al.  Activity-by-Contact model of enhancer-promoter regulation from thousands of CRISPR perturbations , 2019, Nature Genetics.

[31]  E. Heard,et al.  Advances in epigenetics link genetics to the environment and disease , 2019, Nature.

[32]  L. Mirny,et al.  Two major mechanisms of chromosome organization. , 2019, Current opinion in cell biology.

[33]  Leonid A. Mirny,et al.  Ultrastructural details of mammalian chromosome architecture , 2019, bioRxiv.

[34]  Ilya M. Flyamer,et al.  Coolpup.py: versatile pile-up analysis of Hi-C data , 2019, bioRxiv.

[35]  Nezar Abdennur,et al.  Cooler: scalable storage for Hi-C data and other genomically-labeled arrays , 2019, bioRxiv.

[36]  Max W. Chang,et al.  Transcription Elongation Can Affect Genome 3D Structure , 2018, Cell.

[37]  E. Petretto,et al.  Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation , 2018, Nature Immunology.

[38]  Erez Lieberman Aiden,et al.  Cohesin Loss Eliminates All Loop Domains , 2017, Cell.

[39]  Nuno A. Fonseca,et al.  Two independent modes of chromatin organization revealed by cohesin removal , 2017, Nature.

[40]  William Stafford Noble,et al.  HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient , 2017, bioRxiv.

[41]  M. Rots,et al.  Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner , 2016, Nature Communications.

[42]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[43]  Jean-Philippe Vert,et al.  HiC-Pro: an optimized and flexible pipeline for Hi-C data processing , 2015, Genome Biology.

[44]  J. Dekker,et al.  Condensin-Driven Remodeling of X-Chromosome Topology during Dosage Compensation , 2015, Nature.

[45]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[46]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[47]  Fidel Ramírez,et al.  deepTools: a flexible platform for exploring deep-sequencing data , 2014, Nucleic Acids Res..

[48]  Fei Liu,et al.  Interferon induction of IFITM proteins promotes infection by human coronavirus OC43 , 2014, Proceedings of the National Academy of Sciences.

[49]  L. Mirny,et al.  Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data , 2013, Nature Reviews Genetics.

[50]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[51]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[52]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[53]  G. Kärber,et al.  Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche , 1931, Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie.