Lawvere Categories as Composed PROPs

PROPs and Lawvere categories are related notions adapted to the study of algebraic structures borne by an object in a category, but whereas PROPs are symmetric monoidal, Lawvere categories are cartesian. This paper formulates the connection between the two notions using Lack’s technique for composing PROPs via distributive laws. We show Lawvere categories can be seen as resulting from a distributive law of two PROPs — one expressing the algebraic structure in linear form and the other expressing the ability of copying and discarding variables.

[1]  S. Maclane,et al.  Categorical Algebra , 2007 .

[2]  Ross Duncan,et al.  Interacting Frobenius Algebras are Hopf , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[3]  S. Lack,et al.  The formal theory of monads II , 2002 .

[4]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[6]  Paolo Rapisarda,et al.  A categorical approach to open and interconnected dynamical systems , 2015, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[7]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[8]  Robert Rosebrugh,et al.  Distributive laws and factorization , 2002 .

[9]  J. Benabou Introduction to bicategories , 1967 .

[10]  Jurriaan Rot,et al.  Presenting Distributive Laws , 2013, CALCO.

[11]  F. Borceux Handbook Of Categorical Algebra 1 Basic Category Theory , 2008 .

[12]  Filippo Bonchi,et al.  Interacting Bialgebras Are Frobenius , 2014, FoSSaCS.

[13]  Law Fw FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963 .

[14]  M. J. Plasmeijer,et al.  Term graph rewriting: theory and practice , 1993 .

[15]  Marcelo P. Fiore,et al.  The Algebra of Directed Acyclic Graphs , 2013, Computation, Logic, Games, and Quantum Foundations.

[16]  Paul-André Melliès CATEGORICAL SEMANTICS OF LINEAR LOGIC , 2009 .

[17]  Gordon D. Plotkin,et al.  Combining effects: Sum and tensor , 2006, Theor. Comput. Sci..

[18]  Yves Lafont Equational Reasoning with Two-Dimensional Diagrams , 1993, Term Rewriting.

[19]  Fabio Gadducci,et al.  An Algebraic Presentation of Term Graphs, via GS-Monoidal Categories , 1999, Appl. Categorical Struct..

[20]  Filippo Bonchi,et al.  Bialgebraic Semantics for Logic Programming , 2015, Log. Methods Comput. Sci..

[21]  Filippo Bonchi,et al.  Full Abstraction for Signal Flow Graphs , 2015, POPL.

[22]  T. Fritz A presentation of the category of stochastic matrices , 2009, 0902.2554.

[23]  Albert Burroni,et al.  Higher-Dimensional Word Problems with Applications to Equational Logic , 1993, Theor. Comput. Sci..

[24]  John Power,et al.  The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads , 2007, Computation, Meaning, and Logic.

[25]  S. Lane Categories for the Working Mathematician , 1971 .

[26]  Alexandra Silva,et al.  Killing epsilons with a dagger: A coalgebraic study of systems with algebraic label structure , 2015, Theor. Comput. Sci..

[27]  Fabio Zanasi,et al.  Interacting Hopf Algebras: the theory of linear systems , 2018, ArXiv.

[28]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[29]  Bart Jacobs,et al.  Semantics of Weakening and Contraction , 1994, Ann. Pure Appl. Log..

[30]  Roberto Bruni,et al.  On Hierarchical Graphs: Reconciling Bigraphs, Gs-monoidal Theories and Gs-graphs , 2014, Fundam. Informaticae.

[31]  Pawel Sobocinski,et al.  A Programming Language for Spatial Distribution of Net Systems , 2014, Petri Nets.

[32]  Jurriaan Rot,et al.  Presenting Distributive Laws , 2013, CALCO.

[33]  John C. Baez,et al.  Categories in Control , 2014, 1405.6881.

[34]  Filippo Bonchi,et al.  A Categorical Semantics of Signal Flow Graphs , 2014, CONCUR.

[35]  Roberto Bruni,et al.  A Connector Algebra for P/T Nets Interactions , 2011, CONCUR.