A review of human sensory dynamics for application to models of driver steering and speed control

In comparison with the high level of knowledge about vehicle dynamics which exists nowadays, the role of the driver in the driver–vehicle system is still relatively poorly understood. A large variety of driver models exist for various applications; however, few of them take account of the driver’s sensory dynamics, and those that do are limited in their scope and accuracy. A review of the literature has been carried out to consolidate information from previous studies which may be useful when incorporating human sensory systems into the design of a driver model. This includes information on sensory dynamics, delays, thresholds and integration of multiple sensory stimuli. This review should provide a basis for further study into sensory perception during driving.

[1]  Ari Rosenberg,et al.  Models and processes of multisensory cue combination , 2014, Current Opinion in Neurobiology.

[2]  M. M. van Paassen,et al.  Modeling human perceptual thresholds in self-motion perception , 2006 .

[3]  David J. Cole,et al.  Minimum Maneuver Time Calculation Using Convex Optimization , 2013 .

[4]  Max Mulder,et al.  Optimal and Coherence Zone Comparison Within and Between Flight Simulators , 2013 .

[5]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[6]  M. Landy,et al.  Weighted linear cue combination with possibly correlated error , 2003, Vision Research.

[7]  J.,et al.  Optic Flow , 2014, Computer Vision, A Reference Guide.

[8]  Norihiro Sadato,et al.  Visual detection of motion speed in humans: spatiotemporal analysis by fMRI and MEG , 2002, Human brain mapping.

[9]  Hiroaki Fushiki,et al.  Self-motion perception during conflicting visual-vestibular acceleration. , 2008, Journal of vestibular research : equilibrium & orientation.

[10]  David J. Cole,et al.  Robust lap-time simulation , 2014 .

[11]  D. Angelaki,et al.  Multisensory Calibration Is Independent of Cue Reliability , 2011, The Journal of Neuroscience.

[12]  Mark Wentink,et al.  Frequency dependence of allowable differences in visual and vestibular motion cues in a simulator , 2009 .

[13]  Max Mulder,et al.  Evaluation of Vestibular Thresholds for Motion Detection in the SIMONA Research Simulator , 2005 .

[14]  Alexandre Pouget,et al.  Optimal multisensory decision-making in a reaction-time task , 2014, eLife.

[15]  J. D. Hood,et al.  The cervico-ocular reflex in normal subjects and patients with absent vestibular function , 1986, Brain Research.

[16]  Max Mulder,et al.  Effect of Performing a Boundary-Avoidance Tracking Task on the Perception of Coherence Between Visual and Inertial Cues , 2011 .

[17]  Michael Land,et al.  Which parts of the road guide steering? , 1995, Nature.

[18]  Albert Einstein Über die Möglichkeit einer neuen Prüfung des Relativitätsprinzips , 1907 .

[19]  G. Loeb,et al.  Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle. , 2006, Journal of neurophysiology.

[20]  Can Onur,et al.  Computational modeling to predict pilot's expectation of the aircraft state given vestibular and visual cues , 2014, 2014 Systems and Information Engineering Design Symposium (SIEDS).

[21]  L. Young,et al.  Model for vestibular adaptation to horizontal rotation. , 1969, Aerospace medicine.

[22]  Heinrich H. Bülthoff,et al.  Modeling direction discrimination thresholds for yaw rotations around an earth-vertical axis for arbitrary motion profiles , 2012, Experimental Brain Research.

[23]  A. J. Benson,et al.  Thresholds for the perception of whole body angular movement about a vertical axis. , 1989, Aviation, space, and environmental medicine.

[24]  Max Mulder,et al.  Multimodal Pilot Control Behavior in Combined Target-Following Disturbance-Rejection Tasks , 2009 .

[25]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[26]  David N. Lee,et al.  Where we look when we steer , 1994, Nature.

[27]  Peter J. Gawthrop,et al.  Intermittent control: a computational theory of human control , 2011, Biological Cybernetics.

[28]  Heinrich H. Bülthoff,et al.  Forced Fusion in Multisensory Heading Estimation , 2015, PloS one.

[29]  W Bles,et al.  How to use body tilt for the simulation of linear self motion. , 2004, Journal of vestibular research : equilibrium & orientation.

[30]  Erwin R. Boer Tangent point oriented curve negotiation , 1996, Proceedings of Conference on Intelligent Vehicles.

[31]  Smith-Kettlewell,et al.  BIOLOGICAL IMAGE MOTION PROCESSING : A REVIEW , 2012 .

[32]  A. Yuille,et al.  Bayesian decision theory and psychophysics , 1996 .

[33]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[34]  Robin S. Sharp,et al.  OPTIMAL PREVIEW CAR STEERING CONTROL , 2001 .

[35]  Laurence R. Young,et al.  Optimal estimator models for spatial orientation and vestibular nystagmus , 2011, Experimental Brain Research.

[36]  S. Gandevia,et al.  Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. , 2005, Journal of neurophysiology.

[37]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[38]  Mohsen Jamali,et al.  Rapid adaptation of multisensory integration in vestibular pathways , 2015, Front. Syst. Neurosci..

[39]  Saeed V. Vaseghi,et al.  Advanced Digital Signal Processing and Noise Reduction: Vaseghi/Advanced Digital Signal Processing and Noise Reduction, 3rd Edition , 2006 .

[40]  Heinrich H. Bülthoff,et al.  Temporal processing of self-motion: modeling reaction times for rotations and translations , 2013, Experimental Brain Research.

[41]  Max Mulder,et al.  Pitch Motion Perception Thresholds During Passive and Active Tasks , 2012 .

[42]  Michael J. Griffin,et al.  Driver perception of steering feel , 2007 .

[43]  L. R. Young,et al.  Influence of combined visual and vestibular cues on human perception and control of horizontal rotation , 2004, Experimental Brain Research.

[44]  Heinrich H. Bülthoff,et al.  Reaction time and event-related potentials to visual, auditory and vestibular stimuli , 2010 .

[45]  R. Kakigi,et al.  Magnetic response of human extrastriate cortex in the detection of coherent and incoherent motion , 2000, Neuroscience.

[46]  D. Shinar,et al.  Eye Movements in Curve Negotiation , 1977, Human factors.

[47]  David J. Cole,et al.  Bias-Free Identification of a Linear Model-Predictive Steering Controller From Measured Driver Steering Behavior , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[48]  Olaf Blanke,et al.  Self-motion leads to mandatory cue fusion across sensory modalities. , 2012, Journal of neurophysiology.

[49]  Heinrich H. Bülthoff,et al.  VARIABLE ROLL-RATE PERCEPTION IN DRIVING SIMULATION , 2014 .

[50]  Équipe PsyCoTec Driving around bends with manipulated eye-steering coordination , 2008 .

[51]  Frank M. Cardullo,et al.  Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches , 2005 .

[52]  D. Wolpert,et al.  Principles of sensorimotor learning , 2011, Nature Reviews Neuroscience.

[53]  W K McCoy,et al.  A Study of the Relation between Forward Velocity and Lateral Acceleration in Curves During Normal Driving1 , 1968, Human factors.

[54]  Saeed V. Vaseghi,et al.  Advanced Digital Signal Processing and Noise Reduction , 2006 .

[55]  M. M. Paassen,et al.  Modeling Human Multimodal Perception and Control Using Genetic Maximum Likelihood Estimation , 2009 .

[56]  W. Steinhausen Über die Beobachtung der Cupula in den Bogengangsampullen des Labyrinths des lebenden Hechts , 1933, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[57]  René van Paassen,et al.  Identification of the Feedforward Component in Manual Control With Predictable Target Signals , 2013, IEEE Transactions on Cybernetics.

[58]  M. Mulder,et al.  Phase Coherence Zones in Flight Simulation , 2011 .

[59]  Mathias R Lidberg,et al.  Automated driving and autonomous functions on road vehicles , 2015 .

[60]  Jennifer L. Campos,et al.  Bayesian integration of visual and vestibular signals for heading. , 2009, Journal of vision.

[61]  H Kingma,et al.  Thresholds for perception of direction of linear acceleration as a possible evaluation of the otolith function , 2005, BMC ear, nose, and throat disorders.

[62]  Richard M Wilkie,et al.  Does gaze influence steering around a bend? , 2008, Journal of vision.

[63]  David J. Cole,et al.  A Mathematical Model of Driver Steering Control Including Neuromuscular Dynamics , 2008 .

[64]  Richard F. Lewis,et al.  Vestibular Labyrinth Contributions to Human Whole-Body Motion Discrimination , 2012, The Journal of Neuroscience.

[65]  E. Vaucher,et al.  Activation of the mouse primary visual cortex by medial prefrontal subregion stimulation is not mediated by cholinergic basalo-cortical projections , 2015, Front. Syst. Neurosci..

[66]  A. Prochazka Quantifying proprioception. , 1999, Progress in brain research.

[67]  Konrad Paul Kording,et al.  Causal Inference in Multisensory Perception , 2007, PloS one.

[68]  M. Gresty,et al.  Thresholds for detection of motion direction during passive lateral whole-body acceleration in normal subjects and patients with bilateral loss of labyrinthine function , 1996, Brain Research Bulletin.

[69]  J. Dichgans,et al.  Visual-Vestibular Interaction: Effects on Self-Motion Perception and Postural Control , 1978 .

[70]  David J. Cole,et al.  A path-following driver–vehicle model with neuromuscular dynamics, including measured and simulated responses to a step in steering angle overlay , 2012 .

[71]  Edwin G. Boring,et al.  A Chart of the Psychometric Function , 1917 .

[72]  Heinrich H. Bülthoff,et al.  Optimal visual–vestibular integration under conditions of conflicting intersensory motion profiles , 2014, Experimental Brain Research.

[73]  L R Young,et al.  Optimal estimator model for human spatial orientation. , 1988, Annals of the New York Academy of Sciences.

[74]  Lloyd D. Reid,et al.  The detection of low-amplitude yawing motion transients in a flight simulator , 1992, IEEE Trans. Syst. Man Cybern..

[75]  Simos A. Evangelou,et al.  Car driving at the limit by adaptive linear optimal preview control , 2009 .

[76]  J. Riemersma Visual control during straight road driving. , 1981, Acta psychologica.

[77]  D. J. Bottoms THE INTERACTION OF DRIVING SPEED, STEERING DIFFICULTY AND LATERAL TOLERANCE WITH PARTICULAR REFERENCE TO AGRICULTURE , 1983 .

[78]  D. Knill Robust cue integration: a Bayesian model and evidence from cue-conflict studies with stereoscopic and figure cues to slant. , 2007, Journal of vision.

[79]  Charles C. MacAdam,et al.  Application of an Optimal Preview Control for Simulation of Closed-Loop Automobile Driving , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[80]  G. Legge,et al.  Displacement detection in human vision , 1981, Vision Research.

[81]  Greg L. Zacharias,et al.  A Model for Visual Flow-Field Cueing and Self-Motion Estimation , 1983, 1983 American Control Conference.

[82]  O. Blanke,et al.  Learning to integrate contradictory multisensory self-motion cue pairings. , 2015, Journal of vision.

[83]  Paul B Hibbard,et al.  Statistically optimal integration of biased sensory estimates. , 2011, Journal of vision.

[84]  Ahna R Girshick,et al.  Probabilistic combination of slant information: weighted averaging and robustness as optimal percepts. , 2009, Journal of vision.

[85]  F.A.M. van der Steen Self-motion perception , 1998 .

[86]  David J. Cole,et al.  Models of driver speed choice in curves , 2004 .

[87]  Guy Wallis,et al.  An Unexpected Role for Visual Feedback in Vehicle Steering Control , 2002, Current Biology.

[88]  D A Gordon,et al.  Static and dynamic visul fields in human space perception. , 1965, Journal of the Optical Society of America.

[89]  R. Poppele,et al.  Quantitative description of linear behavior of mammalian muscle spindles. , 1970, Journal of neurophysiology.

[90]  R Hosman,et al.  Pilot's perception in the control of aircraft motions. , 1998, Control engineering practice.

[91]  Manfred Plöchl,et al.  Driver models in automobile dynamics application , 2007 .

[92]  Heinrich H. Bülthoff,et al.  Human discrimination of head-centred visual–inertial yaw rotations , 2015, Experimental Brain Research.

[93]  田中 佐 Research article , 2000, Hydrobiologia.

[94]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[95]  G. DeAngelis,et al.  Neural correlates of multisensory cue integration in macaque MSTd , 2008, Nature Neuroscience.

[96]  W W Wierwille,et al.  Driver Steering Reaction Time to Abrupt-Onset Crosswinds, as Measured In a Moving-Base Driving Simulator , 1983, Human factors.

[97]  Max Mulder,et al.  Identification of Nonlinear Motion Perception Dynamics Using Time-Domain Pilot Modeling , 2012 .

[98]  H Collewijn,et al.  Gain and delay of human vestibulo-ocular reflexes to oscillation and steps of the head by a reactive torque helmet. I. Normal subjects. , 1997, Acta oto-laryngologica.

[99]  J. Lackner,et al.  Vertical linear self-motion perception during visual and inertial motion: more than weighted summation of sensory inputs. , 2005, Journal of vestibular research : equilibrium & orientation.

[100]  David J. Cole,et al.  Development of a novel model of driver-vehicle steering control incorporating sensory dynamics , 2016 .

[101]  Max Mulder,et al.  Motion Perception Thresholds in Flight Simulation , 2006 .

[102]  M. M. van Paassen,et al.  Use of Pitch and Heave Motion Cues in a Pitch Control Task , 2009 .

[103]  S. Gandevia,et al.  The kinaesthetic senses , 2009, The Journal of physiology.

[104]  René van Paassen,et al.  A review of visual driver models for system identification purposes , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[105]  H. Bülthoff,et al.  Merging the senses into a robust percept , 2004, Trends in Cognitive Sciences.

[106]  Arthur J. Grunwald,et al.  Vehicular Control by Visual Field Cues-analytical Model and Experimental Validation , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[107]  Takayuki Kondoh,et al.  Identification of Visual Cues and Quantification of Drivers' Perception of Proximity Risk to the Lead Vehicle in Car-Following Situations , 2008 .

[108]  H. Levitt Transformed up-down methods in psychoacoustics. , 1971, The Journal of the Acoustical Society of America.

[109]  Huei Peng,et al.  An adaptive lateral preview driver model , 2005 .

[110]  Huei Peng Evaluation of Driver Assistance Systems—A Human Centered Approach , 2002 .

[111]  E. Boer Car following from the driver’s perspective , 1999 .

[112]  M. Mulder,et al.  Role Identification of Yaw and Sway Motion in Helicopter Yaw Control Tasks , 2008 .

[113]  Teemu H Itkonen,et al.  Beyond the tangent point: gaze targets in naturalistic driving. , 2013, Journal of vision.

[114]  Heinrich H Bülthoff,et al.  Integration of Semi-Circular Canal and Otolith Cues for Direction Discrimination during Eccentric Rotations , 2015, PloS one.

[115]  David J. Cole,et al.  Identification of the steering control behaviour of five test subjects following a randomly curving path in a driving simulator , 2014 .

[116]  Heinrich H. Bülthoff,et al.  Human sensitivity to vertical self-motion , 2013, Experimental Brain Research.

[117]  Amir Naseri,et al.  Human discrimination of translational accelerations , 2012, Experimental Brain Research.

[118]  P. Matthews Evidence from the use of vibration that the human long‐latency stretch reflex depends upon spindle secondary afferents. , 1984, The Journal of physiology.

[119]  G. Loeb,et al.  Mathematical models of proprioceptors. II. Structure and function of the Golgi tendon organ. , 2006, Journal of neurophysiology.

[120]  Heiko Neumann,et al.  A review and evaluation of methods estimating ego-motion , 2012, Comput. Vis. Image Underst..

[121]  Christian Darlot,et al.  Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements , 2002, Biological Cybernetics.

[122]  R.J.A.W. Hosman,et al.  Pilot's Perception and Control of Aircraft Motions , 1998 .

[123]  Brian L Day,et al.  Probing the human vestibular system with galvanic stimulation. , 2004, Journal of applied physiology.

[124]  T D Albright,et al.  Visual motion perception. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[125]  David J. Cole,et al.  Measurement and mathematical model of a driver's intermittent compensatory steering control , 2015 .

[126]  Heinrich H. Bülthoff,et al.  Self-motion sensitivity to visual yaw rotations in humans , 2014, Experimental Brain Research.

[127]  Greg Zacharias Motion sensation dependence on visual and vestibular cues , 1977 .

[128]  Emanuel Todorov,et al.  Stochastic Optimal Control and Estimation Methods Adapted to the Noise Characteristics of the Sensorimotor System , 2005, Neural Computation.

[129]  Rosalie M. Uchanski,et al.  Human discrimination of rotational velocities , 2010, Experimental Brain Research.

[130]  L. Harris,et al.  Perceived timing of vestibular stimulation relative to touch, light and sound , 2009, Experimental Brain Research.

[131]  Guy Wallis,et al.  Limitations of feedforward control in multiple-phase steering movements , 2009, Experimental Brain Research.

[132]  John W. Clark,et al.  Neural Representation of Probabilistic Information , 2001, Neural Computation.

[133]  Max Mulder,et al.  Identification of Multimodal Pilot Control Behavior in Real Flight , 2010 .

[134]  Max Mulder,et al.  Modeling Coherence Zones in Flight Simulation During Yaw Motion , 2013 .

[135]  M. M. van Paassen,et al.  Tuning of the lateral specific force gain based on human motion perception in the Desdemona simulator , 2010 .

[136]  Daan M. Pool,et al.  Comparing Multimodal Pilot Pitch Control Behavior Between Simulated and Real Flight , 2011 .

[137]  A. Prochazka Chapter 11 Quantifying Proprioception , 1999 .

[138]  Max Mulder,et al.  Perception coherence zones in flight simulation , 2010 .

[139]  F. Bremmer,et al.  Perception of self-motion from visual flow , 1999, Trends in Cognitive Sciences.

[140]  Christopher R Fetsch,et al.  Dynamic Reweighting of Visual and Vestibular Cues during Self-Motion Perception , 2009, The Journal of Neuroscience.

[141]  Harald Teufel,et al.  Does jerk have to be considered in linear motion simulation , 2009 .

[142]  C. Onur Developing a computational model of the pilot's best possible expectation of aircraft state given vestibular and visual cues , 2014 .

[143]  D. Mestre,et al.  Path Curvature Discrimination: Dependence on Gaze Direction and Optical Flow Speed , 2012, PloS one.

[144]  P. J. Werkhoven,et al.  Integration of visual and inertial cues in the perception of angular self-motion , 2013, Experimental Brain Research.

[145]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[146]  K. Scherer,et al.  How to map the affective semantic space of scents , 2012, Cognition & emotion.

[147]  Robert Scott Bigler Automobile driver sensory system modeling , 2013 .

[148]  Markus Lappe,et al.  Car drivers attend to different gaze targets when negotiating closed vs. open bends. , 2010, Journal of vision.

[149]  Fred W. Mast,et al.  Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency , 2008, Experimental Brain Research.

[150]  I ROCK,et al.  Vision and Touch: An Experimentally Created Conflict between the Two Senses , 1964, Science.

[151]  David J. Cole,et al.  Application of time-variant predictive control to modelling driver steering skill , 2011 .

[152]  A. J. Benson,et al.  Thresholds for the detection of the direction of whole-body, linear movement in the horizontal plane. , 1986, Aviation, space, and environmental medicine.

[153]  Heinrich H. Bülthoff,et al.  A Bayesian model of the disambiguation of gravitoinertial force by visual cues , 2007, Experimental Brain Research.

[154]  F. Bremmer,et al.  The use of optical velocities for distance discrimination and reproduction during visually simulated self motion , 1999, Experimental Brain Research.

[155]  Zoubin Ghahramani,et al.  Computational principles of movement neuroscience , 2000, Nature Neuroscience.

[156]  B. Tatler,et al.  Steering with the head The visual strategy of a racing driver , 2001, Current Biology.

[157]  Stephen Grossberg,et al.  Neural dynamics of motion integration and segmentation within and across apertures , 2001, Vision Research.

[158]  G. Orban,et al.  Human velocity and direction discrimination measured with random dot patterns , 1988, Vision Research.

[159]  Daniel M. Merfeld,et al.  Perceived tilt and translation during variable-radius swing motion with congruent or conflicting visual and vestibular cues , 2011, Experimental Brain Research.

[160]  Gary D. Herrin,et al.  An Empirical Model for Automobile Driver Horizontal Curve Negotiation , 1974 .

[161]  Günther Prokop,et al.  Modeling Human Vehicle Driving by Model Predictive Online Optimization , 2001 .

[162]  Michael Barnett-Cowan,et al.  Vestibular perception is slow: a review. , 2013, Multisensory research.

[163]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. , 1976, Journal of neurophysiology.

[164]  J. Goldberg,et al.  Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. , 1971, Journal of neurophysiology.

[165]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[166]  David J. Cole,et al.  Application of linear preview control to modelling human steering control , 2009 .

[167]  Eric L. Groen,et al.  Visual-inertial coherence zone in the perception of heading , 2010 .

[168]  W. Trojaborg,et al.  Motor and sensory conduction in different segments of the radial nerve in normal subjects. , 1969, Journal of neurology, neurosurgery, and psychiatry.

[169]  David J. Cole,et al.  Predictive and linear quadratic methods for potential application to modelling driver steering control , 2006 .

[170]  David J. Cole,et al.  Dynamic properties of a driver's arms holding a steering wheel , 2007 .

[171]  M. Landy,et al.  Measurement and modeling of depth cue combination: in defense of weak fusion , 1995, Vision Research.

[172]  M. Chattington,et al.  Eye–steering coordination in natural driving , 2007, Experimental Brain Research.

[173]  Max Mulder,et al.  Multimodal Pilot Control Behavior in Combined Target-Following Disturbance-Rejection Tasks , 2009 .

[174]  Ennio Mingolla,et al.  Neural models of motion integration and segmentation , 2003, Neural Networks.

[175]  Dieter Vaitl,et al.  Shifts in blood volume alter the perception of posture: further evidence for somatic graviception. , 2002, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[176]  L. Harris,et al.  Visual and non-visual cues in the perception of linear self motion , 2000, Experimental Brain Research.

[177]  Arthur J. Grunwald,et al.  Effectiveness of Basic Display Augmentation in Vehicular Control by Visual Field Cues , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[178]  Edmund Donges,et al.  A Two-Level Model of Driver Steering Behavior , 1978 .

[179]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[180]  M. Ohmi Egocentric perception through interaction among many sensory systems. , 1996, Brain research. Cognitive brain research.

[181]  G. Johansson Visual motion perception. , 1975, Scientific American.

[182]  Christopher R Fetsch,et al.  Visual–vestibular cue integration for heading perception: applications of optimal cue integration theory , 2010, The European journal of neuroscience.

[183]  Heinrich H. Bülthoff,et al.  The role of stereo vision in visual-vestibular integration. , 2011, Seeing and perceiving.

[184]  Michael I. Jordan,et al.  Computational models of sensorimotor integration , 1997 .

[185]  René van Paassen,et al.  Modeling Human Control of Self-Motion Direction With Optic Flow and Vestibular Motion , 2013, IEEE Transactions on Cybernetics.

[186]  D A Gordon,et al.  Experimental Isolation of the Driver's Visual Input , 1966, Human factors.

[187]  J Houk,et al.  Responses of Golgi tendon organs to forces applied to muscle tendon. , 1967, Journal of neurophysiology.

[188]  Heikki Summala,et al.  Look-ahead fixations in curve driving , 2013, Ergonomics.

[189]  A. Pouget,et al.  Reading population codes: a neural implementation of ideal observers , 1999, Nature Neuroscience.

[190]  E Brenner,et al.  Detecting Changes in One's Own Velocity from the Optic Flow , 1994, Perception.

[191]  Laurence R. Young,et al.  Optimal Estimator Model for Human Spatial Orientation a , 1988 .

[192]  Stephen Grossberg,et al.  A neural model of how the brain computes heading from optic flow in realistic scenes , 2009, Cognitive Psychology.

[193]  Charles C. MacAdam,et al.  Understanding and Modeling the Human Driver , 2003 .

[194]  Jacques Droulez,et al.  Role of Lateral Acceleration in Curve Driving: Driver Model and Experiments on a Real Vehicle and a Driving Simulator , 2001, Hum. Factors.

[195]  R E Burke,et al.  Spindle model responsive to mixed fusimotor inputs and testable predictions of beta feedback effects. , 2003, Journal of neurophysiology.

[196]  M. Banks,et al.  Visual–Haptic Adaptation Is Determined by Relative Reliability , 2010, The Journal of Neuroscience.

[197]  G Michael Halmagyi,et al.  Latency and initiation of the human vestibuloocular reflex to pulsed galvanic stimulation. , 2006, Journal of neurophysiology.

[198]  V V Rodchenko,et al.  IN-FLIGHT ESTIMATION OF PILOTS' ACCELERATION SENSITIVITY THRESHOLDS , 2000 .

[199]  Heinrich H. Bülthoff,et al.  Multimodal Integration during Self-Motion in Virtual Reality , 2012 .

[200]  Peter R. Grant,et al.  Motion-Visual Phase-Error Detection in a Flight Simulator , 2007 .

[201]  J. Flach Control With an Eye for Perception: Precursors to an Active Psychophysics , 1990 .

[202]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. , 1976, Journal of neurophysiology.

[203]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[204]  Max Mulder,et al.  Influences of Simulator Motion System Characteristics on Pilot Control Behavior , 2013 .

[205]  J. E. Bos,et al.  Perceptual scaling of visual and inertial cues , 2013, Experimental Brain Research.

[206]  L. Young,et al.  A revised dynamic otolith model. , 1968, Aerospace medicine.

[207]  C G Drury,et al.  Effective vehicle width in self-paced tracking. , 1992, Applied ergonomics.

[208]  M. M. van Paassen,et al.  Perception of Combined Visual and Inertial Low-Frequency Yaw Motion , 2010 .

[209]  Markus Lappe,et al.  Driving is smoother and more stable when using the tangent point. , 2009, Journal of vision.

[210]  Roberto Lot,et al.  Lap time optimisation of a racing go-kart , 2016 .

[211]  Frans C. T. van der Helm,et al.  Measuring Neuromuscular Control Dynamics During Car Following With Continuous Haptic Feedback , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[212]  Robert S. Bigler,et al.  A REVIEW OF MATHEMATICAL MODELS OF HUMAN SENSORY DYNAMICS RELEVANT TO THE STEERING TASK , 2011 .

[213]  R.J.A.W. Hosman,et al.  Vestibular models and thresholds of motion perception. Results of tests in a flight simulator , 1978 .

[214]  Max Mulder,et al.  Effects of Peripheral Visual and Physical Motion Cues in Roll-Axis Tracking Tasks , 2008 .