The Universal Elliptic KZB Connection in Higher Level

The level N elliptic KZB connection is a flat connection over the universal elliptic curve in level N with its N-torsion sections removed. Its fiber over the point (E, x) is the unipotent completion of π1(E − E[N ], x). It was constructed by Calaque and Gonzalez. In this paper, we show that the connection underlies an admissible variation of mixed Hodge structure and that it degenerates to the cyclotomic KZ connection over the singular fibers of the compactified universal elliptic curve.

[1]  S. Yau,et al.  Transformation groups and moduli spaces of curves , 2011 .

[2]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[3]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[4]  H. Tsunogai On Some Derivations of Lie Algebras Related to Galois Representations , 1995 .

[5]  P. Deligne,et al.  Les Schémas de Modules de Courbes Elliptiques , 1973 .

[6]  D. Zagier Periods of modular forms and Jacobi theta functions , 1991 .

[7]  P. Deligné Le Groupe Fondamental de la Droite Projective Moins Trois Points , 1989 .

[8]  S. Zucker,et al.  Unipotent variations of mixed Hodge structure , 1987 .

[9]  V. G. Knizhnik,et al.  Current Algebra and Wess-Zumino Model in Two-Dimensions , 1984 .

[10]  Jean-Pierre Serre,et al.  Lie algebras and Lie groups : 1964 lectures given at Harvard University , 1965 .

[11]  Martin Gonzalez Contributions to the theory of KZB associators , 2018 .

[12]  Aaron Pollack Relations between Derivations arising from Modular Forms , 2009 .

[13]  A. Goncharov The dihedral Lie algebras and Galois symmetries of À1(P1-({0,∞} ∪ μN). , 2001 .

[14]  K. Hess Rational homotopy theory , 2011 .

[15]  R. Hain Notes on the universal elliptic KZB connection , 2020 .

[16]  Ma Luo The elliptic KZB connection and algebraic de Rham theory for unipotent fundamental groups of elliptic curves , 2017, Algebra & Number Theory.

[17]  Kuo-Tsai Chen,et al.  Iterated path integrals , 1977 .

[18]  Masaki Kashiwara,et al.  A study of variation of mixed Hodge structure , 1987 .

[19]  R. Hain The de Rham homotopy theory of complex algebraic varieties II , 1987 .

[20]  D. Bernard On the Wess-Zumino-Witten models on the torus☆ , 1988 .

[21]  Steven Zucker,et al.  Variation of mixed Hodge structure. I , 1985 .