The Universal Elliptic KZB Connection in Higher Level
暂无分享,去创建一个
[1] S. Yau,et al. Transformation groups and moduli spaces of curves , 2011 .
[2] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[3] P. Alam. ‘S’ , 2021, Composites Engineering: An A–Z Guide.
[4] H. Tsunogai. On Some Derivations of Lie Algebras Related to Galois Representations , 1995 .
[5] P. Deligne,et al. Les Schémas de Modules de Courbes Elliptiques , 1973 .
[6] D. Zagier. Periods of modular forms and Jacobi theta functions , 1991 .
[7] P. Deligné. Le Groupe Fondamental de la Droite Projective Moins Trois Points , 1989 .
[8] S. Zucker,et al. Unipotent variations of mixed Hodge structure , 1987 .
[9] V. G. Knizhnik,et al. Current Algebra and Wess-Zumino Model in Two-Dimensions , 1984 .
[10] Jean-Pierre Serre,et al. Lie algebras and Lie groups : 1964 lectures given at Harvard University , 1965 .
[11] Martin Gonzalez. Contributions to the theory of KZB associators , 2018 .
[12] Aaron Pollack. Relations between Derivations arising from Modular Forms , 2009 .
[13] A. Goncharov. The dihedral Lie algebras and Galois symmetries of À1(P1-({0,∞} ∪ μN). , 2001 .
[14] K. Hess. Rational homotopy theory , 2011 .
[15] R. Hain. Notes on the universal elliptic KZB connection , 2020 .
[16] Ma Luo. The elliptic KZB connection and algebraic de Rham theory for unipotent fundamental groups of elliptic curves , 2017, Algebra & Number Theory.
[17] Kuo-Tsai Chen,et al. Iterated path integrals , 1977 .
[18] Masaki Kashiwara,et al. A study of variation of mixed Hodge structure , 1987 .
[19] R. Hain. The de Rham homotopy theory of complex algebraic varieties II , 1987 .
[20] D. Bernard. On the Wess-Zumino-Witten models on the torus☆ , 1988 .
[21] Steven Zucker,et al. Variation of mixed Hodge structure. I , 1985 .