Quantum control in infinite dimensions and Banach-Lie algebras

In finite dimensions, controllability of bilinear quantum control systems can be decided quite easily in terms of the "Lie algebra rank condition" (LARC), such that only the systems Lie algebra has to be determined from a set of generators. In this paper we study how this idea can be lifted to infinite dimensions. To this end we look at control systems on an infinite dimensional Hilbert space which are given by an unbounded drift Hamiltonian H0 and bounded control Hamiltonians H1,…,HN. The drift H0 is assumed to have empty continuous spectrum. We use recurrence methods and the theory of Abelian von Neumann algebras to develop a scheme, which allows us to use an approximate version of LARC, in order to check approximate controllability of the control system in question.

[1]  Thomas Chambrion,et al.  Periodic excitations of bilinear quantum systems , 2011, Autom..

[2]  C. Rangan,et al.  The controllability of infinite quantum systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[3]  Hayk Nersisyan,et al.  Global exact controllability in infinite time of Schrödinger equation: multidimensional case , 2012, 1201.3445.

[4]  Riccardo Adami,et al.  Controllability of the Schrödinger Equation via Intersection of Eigenvalues , 2005 .

[5]  Michael Keyl,et al.  Controlling several atoms in a cavity , 2014, 1401.5722.

[6]  P. Krishnaprasad,et al.  Control Systems on Lie Groups , 2005 .

[7]  M. Keyl,et al.  Controlling a d-level atom in a cavity , 2017, 1712.07613.

[8]  Daniel Burgarth,et al.  Quantum control of infinite-dimensional many-body systems , 2013, 1308.4629.

[9]  S. Bhat Controllability of Nonlinear Systems , 2022 .

[10]  Karl-Hermann Neeb,et al.  Structure and Geometry of Lie Groups , 2011 .

[11]  A. Bloch,et al.  Control of trapped-ion quantum states with optical pulses. , 2004, Physical review letters.

[12]  R. Brockett Lie Theory and Control Systems Defined on Spheres , 1973 .

[13]  Jean-Paul Gauthier,et al.  Approximate Controllability, Exact Controllability, and Conical Eigenvalue Intersections for Quantum Mechanical Systems , 2013, 1309.1970.

[14]  U. Boscain,et al.  Controllability of the Schrödinger Equation via Intersection of Eigenvalues , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[15]  Michael Keyl,et al.  A dynamic systems approach to fermions and their relation to spins , 2012, 1211.2226.

[16]  Mazyar Mirrahimi,et al.  Lyapunov control of bilinear Schrödinger equations , 2005, Autom..

[17]  V. Nersesyan Growth of Sobolev Norms and Controllability of the Schrödinger Equation , 2008, 0804.3982.

[18]  Daniel Burgarth,et al.  Symmetry criteria for quantum simulability of effective interactions , 2015, 1504.07734.

[19]  Derek W. Robinson,et al.  C[*]- and W[*]-algebras symmetry groups decomposition of states , 1987 .

[20]  Roger W. Brockett,et al.  Finite Controllability of Infinite-Dimensional Quantum Systems , 2010, IEEE Transactions on Automatic Control.

[21]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[22]  Mario Sigalotti,et al.  Fe b 20 13 Multi-input Schrödinger equation : controllability , tracking , and application to the quantum angular momentum ∗ , 2013 .

[23]  Vahagn Nersesyan,et al.  Global approximate controllability for Schr\"odinger equation in higher Sobolev norms and applications , 2009, 0905.2438.

[24]  Mario Sigalotti,et al.  Controllability of the discrete-spectrum Schrödinger equation driven by an external field , 2008, 0801.4893.

[25]  Uwe Helmke,et al.  Lie Theory for Quantum Control , 2008 .

[26]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[27]  Mario Sigalotti,et al.  A Weak Spectral Condition for the Controllability of the Bilinear Schrödinger Equation with Application to the Control of a Rotating Planar Molecule , 2011, ArXiv.

[28]  T. Apostol Kronecker’s theorem with applications , 1976 .

[29]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[30]  Seth Lloyd,et al.  Controllability of the coupled spin- 1 2 harmonic oscillator system , 2007, 0705.1055.

[31]  Pierre Rouchon,et al.  Controllability Issues for Continuous-Spectrum Systems and Ensemble Controllability of Bloch Equations , 2009, 0903.2720.

[32]  M. Keyl,et al.  Controllability of the Jaynes-Cummings-Hubbard model , 2018, 1811.10529.

[33]  R. Brockett System Theory on Group Manifolds and Coset Spaces , 1972 .

[34]  Mario Sigalotti,et al.  Approximate controllability of the two trapped ions system , 2014, Quantum Inf. Process..

[35]  R. Zeier,et al.  On squares of representations of compact Lie algebras , 2015, 1504.07732.

[36]  Karine Beauchard,et al.  Controllability of a quantum particle in a moving potential well , 2006 .

[37]  Mario Sigalotti,et al.  On the control of spin-boson systems , 2013, 2013 European Control Conference (ECC).

[38]  Mario Sigalotti,et al.  Exact Controllability in Projections of the Bilinear Schrödinger Equation , 2018, SIAM J. Control. Optim..

[39]  Michael Jost The Electronic library of mathematics , 2001 .

[40]  M. Slemrod,et al.  Controllability of distributed bilinear systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[41]  D. Wallace Recurrence theorems: A unified account , 2013, 1306.3925.

[42]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[43]  Mario Sigalotti,et al.  Control of a quantum model for two trapped ions , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[44]  Francesca C. Chittaro,et al.  Adiabatic Control of the Schrödinger Equation via Conical Intersections of the Eigenvalues , 2011, IEEE Transactions on Automatic Control.

[45]  R. Zeier,et al.  Symmetry principles in quantum systems theory , 2010, 1012.5256.

[46]  Y. Chitour,et al.  Generic controllability of the bilinear Schroedinger equation on 1-D domains: the case of measurable potentials , 2016 .