A Survey of Infinite Time Turing Machines

Infinite time Turing machines extend the operation of ordinary Turing machines into transfinite ordinal time, thereby providing a natural model of infinitary computability, with robust notions of computability and decidability on the reals, while remaining close to classical concepts of computability. Here, I survey the theory of infinite time Turing machines and recent developments. These include the rise of infinite time complexity theory, the introduction of infinite time computable model theory, the study of the infinite time analogue of Borel equivalence relation theory, and the introduction of new ordinal computational models. The study of infinite time Turing machines increasingly relies on the interaction of methods from set theory, descriptive set theory and computability theory.

[1]  Andrew Lewis,et al.  Post's problem for supertasks has both positive and negative solutions , 2002, Arch. Math. Log..

[2]  Peter Koepke,et al.  Turing computations on ordinals , 2005, Bull. Symb. Log..

[3]  Joel David Hamkins,et al.  Infinitary Computability with Infinite Time Turing Machines , 2005, CiE.

[4]  Joel David Hamkins,et al.  Infinite Time Turing Machines , 1998, Journal of Symbolic Logic.

[5]  Joel David Hamkins,et al.  Pf ≠ NPf for almost all f , 2003, Math. Log. Q..

[6]  Giacomo Lenzi,et al.  On Fixpoint Arithmetic and Infinite Time Turing Machines , 2004, Inf. Process. Lett..

[7]  G. Sacks Higher recursion theory , 1990 .

[8]  Philip D. Welch,et al.  Eventually infinite time Turing machine degrees: infinite time decidable reals , 2000, Journal of Symbolic Logic.

[9]  Joel David Hamkins,et al.  Infinite Time Turing Machines With Only One Tape , 2001 .

[10]  Philip D. Welch,et al.  The Transfinite Action of 1 Tape Turing Machines , 2005, CiE.

[11]  Joel David Hamkins Supertask computation , 2001, FotFS.

[12]  Ralf Schindler,et al.  P≠NP for Infinite Time Turing Machines , 2003 .

[13]  Joel David Hamkins,et al.  Infinite Time Turing Machines , 2000 .

[14]  Peter Koepke,et al.  Register computations on ordinals , 2008, Arch. Math. Log..

[15]  Philip D. Welch,et al.  The Length of Infinite Time Turing Machine Computations , 2000 .

[16]  Pd Welch Friedman's Trick: Minimality Arguments in the Infinite Time Turing Degrees , 1999 .

[17]  Benedikt Löwe,et al.  Revision Sequences and Computers with an Infinite Amount of Time , 2001, J. Log. Comput..

[18]  Joel David Hamkins,et al.  INFINITE TIME COMPUTABLE MODEL THEORY , 2008 .

[19]  S. Barry Cooper,et al.  Minimality Arguments for Infinite Time Turing Degrees , 1999 .

[20]  Joel David Hamkins,et al.  P != NP cap co-NP for Infinite Time Turing Machines , 2005, J. Log. Comput..