Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.

Photoelectrochemical (PEC) cells offer the ability to convert electromagnetic energy from our largest renewable source, the Sun, to stored chemical energy through the splitting of water into molecular oxygen and hydrogen. Hematite (α-Fe(2)O(3)) has emerged as a promising photo-electrode material due to its significant light absorption, chemical stability in aqueous environments, and ample abundance. However, its performance as a water-oxidizing photoanode has been crucially limited by poor optoelectronic properties that lead to both low light harvesting efficiencies and a large requisite overpotential for photoassisted water oxidation. Recently, the application of nanostructuring techniques and advanced interfacial engineering has afforded landmark improvements in the performance of hematite photoanodes. In this review, new insights into the basic material properties, the attractive aspects, and the challenges in using hematite for photoelectrochemical (PEC) water splitting are first examined. Next, recent progress enhancing the photocurrent by precise morphology control and reducing the overpotential with surface treatments are critically detailed and compared. The latest efforts using advanced characterization techniques, particularly electrochemical impedance spectroscopy, are finally presented. These methods help to define the obstacles that remain to be surmounted in order to fully exploit the potential of this promising material for solar energy conversion.

[1]  G. Somorjai,et al.  The preparation and selected properties of Mg-doped p-type iron oxide as a photocathode for the photoelectrolysis of water using visible light , 1983 .

[2]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[3]  Michael A. Butler,et al.  Photoelectrolysis and physical properties of the semiconducting electrode WO2 , 1977 .

[4]  N. Dimitrijević,et al.  Interfacial electron-transfer equilibria and flatband potentials of .alpha.-ferric oxide and titanium dioxide colloids studied by pulse radiolysis , 1984 .

[5]  P. Roth,et al.  Formation of iron oxide powder in a hot-wall flow reactor. Effect of process conditions on powder characteristics , 2003 .

[6]  Piers R. F. Barnes,et al.  Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si , 2007 .

[7]  S. Badwal,et al.  Equivalent Circuit Analysis of the Impedance Response of Semiconductor/Electrolyte/Counterelectrode Cells , 1982 .

[8]  A. Anderson,et al.  Optical Spectra of Ferrous and Ferric Oxides and the Passive Film: A Molecular Orbital Study , 1982 .

[9]  Shahed U. M. Khan,et al.  PHOTOELECTROCHEMICAL SPLITTING OF WATER AT NANOCRYSTALLINE N-FE2O3 THIN-FILM ELECTRODES , 1999 .

[10]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[11]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[12]  I. E. Grey,et al.  Efficiency of solar water splitting using semiconductor electrodes , 2006 .

[13]  R. Černý,et al.  Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. , 2005, The journal of physical chemistry. B.

[14]  J. Bockris,et al.  Photoelectrochemical evolution of hydrogen on p-indium phosphide , 1984 .

[15]  Jianwei Sun,et al.  Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes. , 2009, Journal of the American Chemical Society.

[16]  M. Grätzel,et al.  Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. , 2010, Nano letters.

[17]  Michael Grätzel,et al.  Passivating surface states on water splitting hematite photoanodes with alumina overlayers , 2011 .

[18]  A. J. Bosman,et al.  Small-polaron versus band conduction in some transition-metal oxides , 1970 .

[19]  K. S. Reddy,et al.  Photoelectrochemical behaviour of undoped ferric oxide (α -Fe2O3) electrodes prepared by spray pyrolysis , 1984 .

[20]  W. Hess,et al.  Carrier dynamics in α‐Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity , 2006 .

[21]  R. Srinivasan,et al.  Electronic and magnetic structure of a 1000 K magnetic semiconductor: α-hematite (Ti) , 2003 .

[22]  C. Kisielowski,et al.  Bicrystalline hematite nanowires. , 2005, The journal of physical chemistry. B.

[23]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[24]  Anke Weidenkaff,et al.  Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. , 2010, Journal of the American Chemical Society.

[25]  W. R. Daud,et al.  An overview of photocells and photoreactors for photoelectrochemical water splitting , 2010 .

[26]  Craig A Grimes,et al.  Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. , 2007, Nano letters.

[27]  Alexander J. Cowan,et al.  Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. , 2011, Chemical communications.

[28]  M. Grätzel,et al.  Oxygen Evolution from Water via Redox Catalysis , 1978 .

[29]  R. Könenkamp,et al.  Solar cell with extremely thin absorber on highly structured substrate , 2003 .

[30]  J. Moser,et al.  Photoelectrochemical Studies on Nanocrystalline Hematite Films , 1994 .

[31]  Vladimir M. Aroutiounian,et al.  Investigations of the Fe1.99Ti0.01O3–electrolyte interface , 2000 .

[32]  Daniel G Nocera,et al.  Hydrogen production by molecular photocatalysis. , 2007, Chemical reviews.

[33]  Michael Grätzel,et al.  Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. , 2006, Journal of the American Chemical Society.

[34]  Peter D. Johnson,et al.  Electronic structures of α- Fe 2 O 3 and Fe 3 O 4 from O K -edge absorption and emission spectroscopy , 1993 .

[35]  A. Walsh,et al.  Structural, magnetic, and electronic properties of the Co-Fe-Al oxide spinel system: Density-functional theory calculations , 2007 .

[36]  Jun-Ho Yum,et al.  Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting , 2010 .

[37]  A. Beznosov,et al.  Optical absorption edge in α–Fe2O3: The exciton–magnon structure , 1998 .

[38]  Michael Grätzel Mesoscopic solar cells for electricity and hydrogen production from sunlight , 2005 .

[39]  D. Vanmaekelbergh,et al.  Impedance spectroscopy at semiconductor electrodes: Review and recent developments , 1996 .

[40]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[41]  D. W. Tanner,et al.  The electrical properties of alpha ferric oxide—II.: Ferric oxide of high purity , 1963 .

[42]  P. Biswas,et al.  Aerosol-Chemical Vapor Deposition Method For Synthesis of Nanostructured Metal Oxide Thin Films With Controlled Morphology , 2010 .

[43]  Richard M. Swanson,et al.  A vision for crystalline silicon photovoltaics , 2006 .

[44]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[45]  A. Bard,et al.  Semiconductor Electrodes: V. The Application of Chemically Vapor Deposited Iron Oxide Films to Photosensitized Electrolysis , 1976 .

[46]  Wolfgang W. Gärtner,et al.  Depletion-Layer Photoeffects in Semiconductors , 1959 .

[47]  John H. Kennedy,et al.  Flatband Potentials and Donor Densities of Polycrystalline α ‐ Fe2 O 3 Determined from Mott‐Schottky Plots , 1978 .

[48]  Michael Grätzel,et al.  Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. , 2010, Angewandte Chemie.

[49]  E. Paterson The Iron Oxides. Structure, Properties, Reactions, Occurrences and Uses , 1999 .

[50]  J. Moser,et al.  Photoelectrochemistry with Colloidal Semiconductors; Laser Studies of Halide Oxidation in Colloidal Dispersions of TiO2 and α-Fe2O3 , 1982 .

[51]  Jong Hyeok Park,et al.  Synthesis and photoelectrochemical cell properties of vertically grown α-Fe2O3 nanorod arrays on a gold nanorod substrate , 2010 .

[52]  M. Calvin,et al.  Photoeffects in Fe/sub 2/O/sub 3/ sintered semiconductors , 1979 .

[53]  A. Demourgues,et al.  Impact of structural features on pigment properties of α-Fe2O3 haematite , 2008 .

[54]  Michael Grätzel,et al.  Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis , 2005 .

[55]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[56]  A. Hagfeldt,et al.  Aqueous photoelectrochemistry of hematite nanorod array , 2002 .

[57]  J. Leduc,et al.  Photoelectrochemical and impedance characteristics of specular hematite. 2. Deep bulk traps in specular hematite at small a.c. frequencies , 1988 .

[58]  Eric W. McFarland,et al.  Pt-Doped α-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting , 2008 .

[59]  F. Morin Electrical Properties of a-Fe2O3 , 1954 .

[60]  J. M. Coronado,et al.  Development of alternative photocatalysts to TiO2: Challenges and opportunities , 2009 .

[61]  G. Horowitz,et al.  Crystal growth and photoelectrochemical study of Zr-doped α-Fe2O3 single crystal☆ , 1982 .

[62]  Michael Grätzel,et al.  WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach , 2009 .

[63]  M. Grätzel,et al.  Controlling Photoactivity in Ultrathin Hematite Films for Solar Water‐Splitting , 2010 .

[64]  B. Kroposki,et al.  Renewable hydrogen production , 2008 .

[65]  Michael Grätzel,et al.  Anisotropic photocatalytic properties of hematite , 2009, Aquatic Sciences.

[66]  J. Kennedy,et al.  Photooxidation of Water at α ‐ Fe2 O 3 Electrodes , 1978 .

[67]  B. Parkinson,et al.  Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. , 2009, Chemical Society reviews.

[68]  W. H. Butler,et al.  Electronic and magnetic structure of transition-metal-doped α -hematite , 2005 .

[69]  Arnold J. Forman,et al.  Electrodeposition of α-Fe2O3 Doped with Mo or Cr as Photoanodes for Photocatalytic Water Splitting , 2008 .

[70]  R. Shrivastav,et al.  Characterization of Zn-doped hematite thin films for photoelectrochemical splitting of water , 2006 .

[71]  R. Chang,et al.  Direct‐Current Conductivity and Iron Tracer Diffusion in Hematite at High Temperatures , 1972 .

[72]  R. I. Taylor,et al.  Diffusion of 55Fe in Fe2O3 single crystals , 1985 .

[73]  A. Gualtieri,et al.  In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction , 1999 .

[74]  C. Lim,et al.  Substrate-friendly synthesis of metal oxide nanostructures using a hotplate. , 2006, Small.

[75]  Fu-Ren F. Fan,et al.  Rapid Screening of Effective Dopants for Fe2O3 Photocatalysts with Scanning Electrochemical Microscopy and Investigation of Their Photoelectrochemical Properties , 2009 .

[76]  G. Horowitz Capacitance-voltage measurements and flat-band potential determination on Zr-doped α-Fe2O3 single-crystal electrodes , 1983 .

[77]  R. Murray,et al.  Electrogenerated IrO(x) nanoparticles as dissolved redox catalysts for water oxidation. , 2009, Journal of the American Chemical Society.

[78]  Michael Grätzel,et al.  Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting , 2009 .

[79]  J. Kennedy,et al.  Photoactivity of Polycrystalline α ‐ Fe2 O 3 Electrodes Doped with Group IVA Elements , 1981 .

[80]  V. McKee,et al.  Nanostructured α-Fe2O3 Thin Films for Photoelectrochemical Hydrogen Generation , 2009 .

[81]  M. Dupuis,et al.  An ab initio model of electron transport in hematite (α-Fe2O3) basal planes , 2003 .

[82]  M. Misra,et al.  Water Photooxidation by Smooth and Ultrathin α-Fe2O3 Nanotube Arrays , 2009 .

[83]  Joop Schoonman,et al.  Solar hydrogen production with nanostructured metal oxides , 2008 .

[84]  B. Kasemo,et al.  Comment on "Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2" (II) , 2003, Science.

[85]  N. S. Mcalpine,et al.  Characterization of Ti-doped α-Fe2O3, electrodes by impedance measurements , 1988 .

[86]  Craig A. Grimes,et al.  Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization , 2006 .

[87]  T. Nakau Electrical Conductivity of α-Fe2O3 , 1960 .

[88]  G. Somorjai,et al.  The photoelectrochemistry of niobium doped α-Fe2O3 , 1988 .

[89]  Mechanisms of water oxidation to oxygen: cobalt(IV) as an intermediate in the aquocobalt(II)-catalyzed reaction , 1983 .

[90]  Valerio,et al.  Theoretical study of electronic, magnetic, and structural properties of alpha -Fe2O3 (hematite). , 1995, Physical review. B, Condensed matter.

[91]  F. Morin Electrical Properties of α Fe 2 O 3 and α Fe 2 O 3 Containing Titanium , 1951 .

[92]  Michael Grätzel,et al.  New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films , 2006 .

[93]  K. Rosso,et al.  Linked Reactivity at Mineral-Water Interfaces Through Bulk Crystal Conduction , 2008, Science.

[94]  G. M. Stepanyan,et al.  Investigations of the structure of the iron oxide semiconductor–electrolyte interface , 2006 .

[95]  Ryan L. Spray,et al.  Photoactivity of Transparent Nanocrystalline Fe2O3 Electrodes Prepared via Anodic Electrodeposition , 2009 .

[96]  M. Grätzel,et al.  Sauerstoffentwicklung aus Wasser durch Redoxkatalyse , 1978 .

[97]  Ruth Shinar,et al.  Photoactivity of doped αFe2O3 electrodes , 1982 .

[98]  R. Murray,et al.  Efficient Electro-Oxidation of Water near Its Reversible Potential by a Mesoporous IrOx Nanoparticle Film , 2009 .

[99]  John B. Goodenough,et al.  Electrochemistry and photoelectrochemistry of iron(III) oxide , 1983 .

[100]  Gabor A. Somorjai,et al.  The characterization of doped iron oxide electrodes for the photodissociation of water: stability, optical, and electronic properties , 1984 .

[101]  Anders Hagfeldt,et al.  Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides , 2001 .

[102]  Tianmiao Wang,et al.  Defects and growing mechanisms of α-Fe2O3 nanowires , 2006 .

[103]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[104]  A. Goodman,et al.  Metal‐Semiconductor Barrier‐Height Measurement by the Differential Capacitance Method—Degenerate One‐Carrier System , 1963 .

[105]  Zhong Lin Wang,et al.  Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires. , 2005, The journal of physical chemistry. B.

[106]  Miroslav Mashlan,et al.  Iron(III) Oxides from Thermal ProcessesSynthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications† , 2002 .

[107]  Michael Grätzel,et al.  Colloidal Redox Catalysts for Evolution of Oxygen and for Light‐Induced Evolution of Hydrogen from Water , 1979 .

[108]  Yunyi Fu,et al.  Synthesis of Fe2O3 nanowires by oxidation of iron , 2001 .

[109]  R. Hausbrand,et al.  Electronic properties of thermally formed thin iron oxide films , 2007 .

[110]  P. Hagenmuller,et al.  Anisotropie des proprietes electriques de l'oxyde de fer Fe2O3α , 1984 .

[111]  W. White,et al.  Optical absorption spectrum of hematite, αFe2O3 near IR to UV☆ , 1980 .

[112]  R. D. Nasby,et al.  Photoassisted electrolysis of water using single crystal α-Fe2O3 anodes , 1976 .

[113]  E. Wang,et al.  Photoelectrochemical Characteristics Of α-Fe2O3 Nanocrystalline Semiconductor Thin Film , 2000 .

[114]  K. Wijayantha,et al.  Fabrication of nanostructured α-Fe2O3 electrodes using ferrocene for solar hydrogen generation , 2009 .

[115]  S. M. Ahmed,et al.  Photoelectrochemical and impedance characteristics of specular hematite. 1. Photoelectrochemical parallel conductance, and trap rate studies , 1988 .

[116]  De-jun Wang,et al.  Surface photovoltage characterization of an oriented α-Fe2O3 nanorod array , 2008 .

[117]  Jan Augustynski,et al.  Photoelectrochemical Properties of Nanostructured Tungsten Trioxide Films , 2001 .

[118]  A. Ghosh,et al.  Transition-metal dopants for extending the response of titanate photoelectrolysis anodes , 1979 .

[119]  K. Raja,et al.  Nanostructured anodic iron oxide film as photoanode for water oxidation , 2009 .

[120]  Z. Fan,et al.  Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors , 2005 .

[121]  P. Kulesza,et al.  Metal oxide photoanodes for solar hydrogen production , 2008 .

[122]  W. Green,et al.  Detailed Kinetic Modeling of Iron Nanoparticle Synthesis from the Decomposition of Fe(CO)5 , 2007 .

[123]  J. Bockris,et al.  Thin film photoelectrochemistry: Iron oxide , 1984 .

[124]  Michel Dupuis,et al.  Charge Transport in Metal Oxides: A Theoretical Study of Hematite α-Fe2O3 , 2005 .

[125]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[126]  A. Hagfeldt,et al.  Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite , 2000 .

[127]  Nerine J. Cherepy,et al.  Ultrafast Studies of Photoexcited Electron Dynamics in γ- and α-Fe2O3 Semiconductor Nanoparticles , 1998 .

[128]  D. Gamelin,et al.  Photoelectrochemical water oxidation by cobalt catalyst ("Co-Pi")/alpha-Fe(2)O(3) composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. , 2010, Journal of the American Chemical Society.

[129]  Asif Ali Tahir,et al.  Nanostructured α-Fe2O3 Electrodes for Solar Driven Water Splitting : Effect of Doping Agents on Preparation and Performance , 2009 .

[130]  Aron Walsh,et al.  Electrodeposited Aluminum-Doped α-Fe2O3 Photoelectrodes: Experiment and Theory , 2010 .

[131]  J. Bockris,et al.  Stacked thin‐film photoelectrode using iron oxide , 1984 .

[132]  P. Boddy Oxygen Evolution on Semiconducting TiO2 , 1968 .

[133]  E. McFarland,et al.  Improved photoelectrochemical performance of Ti-doped alpha-Fe2O3 thin films by surface modification with fluoride. , 2009, Chemical communications.

[134]  M. Graetzel,et al.  Preferential Orientation in Hematite Films for Solar Hydrogen Production via Water Splitting , 2010 .

[135]  M. Grätzel,et al.  Kolloidale Redoxkatalysatoren für die Sauerstoffentwicklung und die lichtinduzierte Wasserstoffentwicklung aus Wasser , 1979 .

[136]  Bruce A. Parkinson,et al.  Combinatorial Discovery and Optimization of a Complex Oxide with Water Photoelectrolysis Activity , 2008 .