Vertica-ML: Distributed Machine Learning in Vertica Database
暂无分享,去创建一个
Chuck Bear | Arash Fard | George Larionov | Anh Le | Waqas Dhillon | Chuck Bear | A. Fard | George Larionov | Anh Le | Waqas Dhillon
[1] Carlo Curino,et al. Cloudy with high chance of DBMS: a 10-year prediction for Enterprise-Grade ML , 2020, CIDR.
[2] Rui Liu,et al. Building the Enterprise Fabric for Big Data with Vertica and Spark Integration , 2016, SIGMOD Conference.
[3] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[4] Kun Li,et al. The MADlib Analytics Library or MAD Skills, the SQL , 2012, Proc. VLDB Endow..
[5] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[6] Sergei Vassilvitskii,et al. Scalable K-Means++ , 2012, Proc. VLDB Endow..
[7] Samuel Madden,et al. MODELDB: Opportunities and Challenges in Managing Machine Learning Models , 2018, IEEE Data Eng. Bull..
[8] Ramakrishna Varadarajan,et al. The Vertica Analytic Database: C-Store 7 Years Later , 2012, Proc. VLDB Endow..
[9] Roberto J. Bayardo,et al. PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce , 2009, Proc. VLDB Endow..
[10] Tim Kraska,et al. Neo: A Learned Query Optimizer , 2019, Proc. VLDB Endow..
[11] Neoklis Polyzotis,et al. Data Lifecycle Challenges in Production Machine Learning , 2018, SIGMOD Rec..
[12] Michael Stonebraker,et al. C-Store: A Column-oriented DBMS , 2005, VLDB.
[13] Chris Jermaine,et al. Declarative Recursive Computation on an RDBMS, or, Why You Should Use a Database For Distributed Machine Learning , 2019, ArXiv.
[14] Ameet Talwalkar,et al. MLlib: Machine Learning in Apache Spark , 2015, J. Mach. Learn. Res..
[15] Tim Kraska,et al. Machine Learning and Databases: The Sound of Things to Come or a Cacophony of Hype? , 2015, SIGMOD Conference.
[16] Sriram Subramanian,et al. Model Governance: Reducing the Anarchy of Production ML , 2018, USENIX Annual Technical Conference.
[17] Yuan Yu,et al. TensorFlow: A system for large-scale machine learning , 2016, OSDI.