A new method for robust Schur stability analysis

This article is concerned with robust stability of uncertain discrete-time linear systems. The matrix defining the linear system (system matrix) is assumed to depend affinely on a set of time-invariant unknown parameters lying on a known polytope. Robust stability is investigated by checking whether a certain integer power κ of the uncertain system matrix has spectral norm less than one. This peculiar stability test is shown to be equivalent to the positivity analysis of a homogeneous symmetric matrix polynomial with precisely known coefficients and degree indexed by κ. A unique feature is that no extra variables need to be added to the problems being solved. Numerical experiments reveal that the value of κ needed to test robust stability is mostly independent of the system dimension but grows sharply as the eigenvalues of the uncertain system approach the unit circle. By identifying the proposed stability test with a particular choice of a parameter-dependent Lyapunov function, extra variables can be introduced, yielding linear matrix inequalities optimisation problems of improved convergence.

[1]  P. Peres,et al.  On a convex parameter space method for linear control design of uncertain systems , 1991 .

[2]  Ricardo C. L. F. Oliveira,et al.  Parameter-Dependent LMIs in Robust Analysis: Characterization of Homogeneous Polynomially Parameter-Dependent Solutions Via LMI Relaxations , 2007, IEEE Transactions on Automatic Control.

[3]  Pedro Luis Dias Peres,et al.  An improved LMI condition for robust D-stability of uncertain polytopic systems , 2003, IEEE Trans. Autom. Control..

[4]  Ricardo H. C. Takahashi,et al.  New Approach to Robust$ cal D$-Stability Analysis of Linear Time-Invariant Systems With Polytope-Bounded Uncertainty , 2006, IEEE Transactions on Automatic Control.

[5]  B. Barmish Necessary and sufficient conditions for quadratic stabilizability of an uncertain system , 1985 .

[6]  E. Feron,et al.  Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions , 1996, IEEE Trans. Autom. Control..

[7]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[8]  Ricardo C. L. F. Oliveira,et al.  LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions , 2006, Syst. Control. Lett..

[9]  Graziano Chesi,et al.  Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: an LMI approach , 2005, IEEE Transactions on Automatic Control.

[10]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[11]  Carsten W. Scherer,et al.  Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..

[12]  Ricardo C. L. F. Oliveira,et al.  LMI RELAXATIONS FOR HOMOGENEOUS POLYNOMIAL SOLUTIONS OF PARAMETER-DEPENDENT LMIS , 2006 .

[13]  Liu Hsu,et al.  LMI characterization of structural and robust stability , 1998, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[14]  J. Lasserre,et al.  On parameter-dependent Lyapunov functions for robust stability of linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[15]  Pierre-Alexandre Bliman,et al.  A Convex Approach to Robust Stability for Linear Systems with Uncertain Scalar Parameters , 2003, SIAM J. Control. Optim..

[16]  C. Scherer Higher-order relaxations for robust LMI problems with verifications for exactness , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[17]  Ricardo C. L. F. Oliveira,et al.  Schur stability of polytopic systems through positivity analysis of matrix-valued polynomials , 2007, 2007 46th IEEE Conference on Decision and Control.

[18]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[19]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[20]  Pedro Luis Dias Peres,et al.  A less conservative LMI condition for the robust stability of discrete-time uncertain systems , 2001, Syst. Control. Lett..

[21]  Pablo A. Parrilo,et al.  Semidefinite Programming Relaxations and Algebraic Optimization in Control , 2003, Eur. J. Control.

[22]  A.G. Aghdam,et al.  Robust Stability of LTI Systems Over Semialgebraic Sets Using Sum-of-Squares Matrix Polynomials , 2008, IEEE Transactions on Automatic Control.

[23]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[24]  Chun-Hsiung Fang,et al.  A new LMI condition for robust stability of discrete-time uncertain systems , 2005, Syst. Control. Lett..

[25]  Rubens H. Korogui,et al.  MATRIX QUADRATIC POLYNOMIALS WITH APPLICATION TO ROBUST STABILITY ANALYSIS , 2006 .

[26]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[27]  A.G. Aghdam,et al.  A Necessary and Sufficient Condition for Robust Stability of LTI Discrete-Time Systems using Sum-of-Squares Matrix Polynomials , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[28]  P. Peres,et al.  Stability of polytopes of matrices via affine parameter-dependent lyapunov functions : Asymptotically exact LMI conditions , 2005 .

[29]  C. W. Scherer,et al.  Relaxations for Robust Linear Matrix Inequality Problems with Verifications for Exactness , 2005, SIAM J. Matrix Anal. Appl..

[30]  Graziano Chesi Establishing stability and instability of matrix hypercubes , 2005, Syst. Control. Lett..

[31]  M.C. de Oliveira,et al.  An LMI characterization of polynomial parameter-dependent Lyapunov functions for robust stability , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[32]  Ricardo C. L. F. Oliveira,et al.  Convergent LMI relaxations for robust analysis of uncertain linear systems using lifted polynomial parameter-dependent Lyapunov functions , 2008, Syst. Control. Lett..

[33]  Qing-Guo Wang,et al.  Less conservative D-stability test for polytopic systems using linearly parameter-dependent lyapunov functions , 2006 .